

In Vitro Metabolic Stability of ALC-0315 in CD-1/ICR Mouse, Sprague Dawley Rat, Cynomolgus Monkey, and Human Liver S9 Fractions

	Acuitas Therapeutics Inc.				
a.	6190 Agronomy Road, Suite 402				
Sponsor	Vancouver BC V6T 1Z3				
	Canada				
	Medicilon Preclinical Research (Shanghai) LLC				
Testing Festility	585 Chuanda Rd, Pudong				
Testing Facility	Shanghai 201299				
	China				
	(b) (6)				
Study Monitor	Acuitas Therapeutics Inc.				
	(b) (6)				
	(b) (6)				
	Medicilon Preclinical Research (Shanghai) LLC				
Study Director	(b) (6)				
	(b) (6)				
	Medicilon Preclinical Research (Shanghai) LLC				
Alternate Contact	(b) (6)				
Study Identification	01049-20009				
Experimental Start Date	2020-06-19				
Experimental Completion Date	2020-06-24				
Number of Pages in Report	31				

TABLE OF CONTENTS

SUMMARY	3
SIGNATURES	4
1. OBJECTIVE	5
2. MATERIALS	5
2.1 Test Article	5
2.2 Positive Controls	5
2.3 Internal Standard	5
2.4 Liver S9 Fractions	5
2.5 Coenzymes and Pore-forming Agent	6
3. EXPERIMENTAL PROCEDURES	6
4. BIOANALYSIS	8
4.1 Instruments	
4.2 LC/MS/MS Conditions	8
4.3 Detection of ALC-0315	8
5. DATA ANALYSIS	9
6. RESULTS	9
7. CONCLUSIONS	9
8. APPENDICES	14

SUMMARY

This study evaluated the *in vitro* metabolic stability of ALC-0315 in liver S9 fractions of CD-1/ICR mouse, Sprague Dawley rat, cynomolgus monkey, and human. ALC-0315 was stable after an approximately 2-hour incubation with liver S9 from all these species.

SIGNATURES

Compliance

This was a non-GLP study and was not conducted under full compliance with Good Laboratory Practice (GLP) regulations. Analyses were conducted according to an approved protocol and Standard Operating Procedures (SOPs) of Medicilon Preclinical Research (Shanghai) LLC. All data are documented in analysts' laboratory notebooks and electronic document management systems of Medicilon Preclinical Research (Shanghai) LLC. The content of this report has been reviewed against the raw data listings, summary tables and protocol for accuracy of the report.

Study Director Approval:

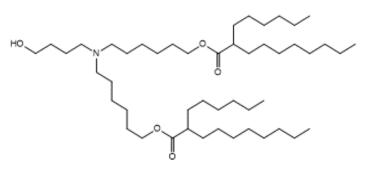
Study Director

(b) (6)

Sponsor Approval:

2020/08/10 Date

August 10, 2020 Date


1. OBJECTIVE

To evaluate the *in vitro* metabolic stability of ALC-0315 in liver S9 fractions from different species.

2. MATERIALS

2.1 Test Article

Name: ALC-0315 Molecular Formula: C₄₈H₉₅NO₅ MW (g/mol): 766.27 Exact Mass: 765.72

2.2 Positive Controls

Compound Name	Vendor	CAS No.	Cat. No.	Lot No.	Molecular Weight
Testosterone	Aladdin	58-22-0	T102169	K1505051	288.42
7-hydroxycoumarin	J&K Scientific	93-35-6	153384	L630I04	162.14

2.3 Internal Standard

Compound Name	Vendor	CAS No.	Cat. No.	Lot No.	Molecular Weight
Verapamil hydrochloride	TCI	152-11-4	V0118	RFMWJ-RL	491.06
Tolbutamide	Sigma-Aldrich	64-7-7	46968	BCBV8457	270.35

2.4 Liver S9 Fractions

The following pooled liver S9 fractions of CD-1/ICR mouse, Sprague Dawley rat, cynomolgus monkey, and human were stored in a -70°C ultra low temperature freezer prior to use.

Species	Manufacturer	Cat. No.	Lot No.	Protein Concentration (mg/mL)
CD-1/ICR mouse (male)	XenoTech	M1000.S9	1310210	20
Sprague Dawley rat (male)	XenoTech	R1000.S9	1310212	20
Cynomolgus monkey (male)	XenoTech	P2000.S9	0910273	20
Human (mixed gender)	BioreclamationIVT	X008023	BKY	20

2.5 Coenzymes and Pore-forming Agent

NADPH (reduced β -nicotinamide adenine dinucleotide 2'-phosphate) tetrasodium salt was stored at 2~8°C in a refrigerator prior to use. UDPGA (uridine-diphosphate-glucuronic acid trisodium salt) and alamethicin were stored in a -20°C freezer prior to use.

Compound Name	Manufacturer	Cat. No.	Molecular Weight	Purity
NADPH	Roche Diagnostic	10621706001	833.35	97%
UDPGA	Sigma	U6751	646.23	≥98
Alamethicin	Aladdin	A132913	1964.3078	99%

3. EXPERIMENTAL PROCEDURES

3.1 Stock solutions preparation:

2.54 mg of ALC-0315 was weighed and dissolved in 331.48 μ L of DMSO to obtain a 10 mM stock solution. 2.547 mg of testosterone was weighed and dissolved in 551.93 μ L of DMSO to obtain a 16 mM solution. A 10 mM testosterone stock solution was then prepared by adding 60 μ L DMSO to 100 μ L of the 16 mM testosterone solution. 3.97 mg of 7-hydroxycoumarin was weighed and dissolved in 1224.25 μ L of DMSO to obtain a 20 mM solution. A 10 mM 7-hydroxycoumarin stock solution was then prepared by adding 100 μ L DMSO to 100 μ L of the 20 mM 7-hydroxycoumarin solution. 5 mg of alamethicin was weighed and dissolved in 495 μ L of 100 mM potassium phosphate buffer to obtain a 10 mg/mL alamethicin solution.

3.2	0.5	mМ	spiking	solutions	preparation:
~	0.0	111111	spining	bonationio	proparation

Spiking Solution of Test Article or Positive Control							
Conc. of Stock Solution Volume of Stock Solution Volume of MeOH Final Concentration							
(mM) (µL) (µL) (mM)							
10 10 190 0.5							

3.3 Preparation of 1.5× liver S9 suspensions (with alamethicin) containing test article or positive control:

1.5× Liver S9 Suspension (with Alamethicin) Containing Test Article or Positive Control							
Live	rs S9	0.5 mM		100 mM potassium	Final Concentration		
Conc. of Stock Solution (mg/mL)	Volume of Stock Solution (µL)	Spiking Solution (µL)	10 mg/ml Alamethicin Solution	phosphate buffer containing 5 mM of MgCl ₂ (pH 7.4) (μL)	Liver S9 Protein (mg/mL)	Compound (µM)	
20	37.5	1.5	1.9	459.1	1.5	1.5	

- **3.4** 1.5× liver S9 suspensions (with alamethicin) containing test article or positive control were kept on ice for 15 minutes.
- **3.5** 28.51 mg of NADPH was weighed and dissolved in 2.851 mL of 100 mM potassium phosphate buffer to obtain a 12 mM NADPH working solution. 25 mg of UDPGA was weighed and dissolved in 6.448 mL of 100 mM potassium phosphate buffer to obtain a 6 mM UDPGA working solution. 2.8 mL of 12 mM NADPH working solution was added into 2.8 mL of 6 mM UDPGA working solution to obtain a 6 mM NADPH and 3 mM UDPGA mixed working solution. This mixed working solution was then pre-warmed at 37°C.
- **3.6** 30μ L of liver S9 suspension (with alamethicin) containing 1.5 μ M test article or positive control was added to 96-well plates in duplicate for each time point (0, 15, 30, 60, 90, and 120 min).
- **3.7** 96-well incubation plates were pre-warmed at 37°C for 5 min.
- **3.8** For 0 min samples: 450 μ L of ethanol containing internal standard (IS solution) was added before 15 μ L of pre-warmed mixed working solution (6 mM NADPH and 3 mM UDPGA) was added.
- **3.9** For other samples (15, 30, 60, 90, and 120 min): 15 μL of pre-warmed mixed working solution (6 mM NADPH and 3 mM UDPGA) was added to initiate the reaction.

Volume (µL)			Final Concentration in Incubation Mixture		
1.5× Liver S9 Suspension Containing Test Article or Positive Control	3×NADPH Working Solution	Total	Liver S9 Protein (mg/mL)	Test Article or Positive Control (μM)	NADPH (mM)
30	15	45	0.5	1	2

The samples were incubated at 37° C and 450μ L of IS solution was added to stop the reaction at the corresponding time points (15, 30, 60, 90, and 120 min).

- **3.10** After quenching, the plates were shaken at 600 rpm for 10 min and then centrifuge at 6,000 rpm for 15 min.
- **3.11** Then 200 μ L of the supernatant from each well was transferred into a 96-well sample plate for LC-MS/MS analysis.

4. BIOANALYSIS

4.1 Instruments

Waters Acquity UPLC system Sciex Triple Quad 6500+ with ESI ion source

4.2 LC/MS/MS Conditions

Column: ACQUITY UPLC BEH HILIC 1.7 μ m (2.1*100 mm) Gradient for ALC-0315:

Time (min)	Solvent A (%)	Solvent B (%)
0.01	5	95
1.50	40	60
2.00	40	60
2.01	5	95
2.50	5	95

Solvent A: 10mM ammonium formate, 0.1% formic acid in water

Solvent B: 10mM ammonium formate, 0.1% formic acid in acetonitrile

Flow rate: 500 μ L/min

Column temperature: 40°C

Autosampler temperature: 4°C

MS Conditions: MRM detection

Compound	Q1(m/z)	Q3(m/z)	DP	CE	Retention Time (min)
ALC-0315	766.90	510.60	100	66	~1.08
Verapamil (IS)	455.30	165.20	49	28	~1.21

4.3 Detection of ALC-0315

Representative chromatograms of ALC-0315 in each matrix are shown in Appendix 1.

5. DATA ANALYSIS

The % remaining parent compound (ALC-0315 or positive control, testosterone and 7-hydroxycoumarin) was calculated by dividing the peak area ratio (test article peak area/ internal standard peak area) by the time zero peak area ratio. The natural logarithm of % remaining parent compound was plotted against time, and the slope of the regression line was determined. The elimination constant and half-life were calculated, when possible, as indicated below.

Elimination rate constant (k) = - slope Half-life ($t_{1/2}$) = 0.693/k

6. RESULTS

A summary of the % remaining parent compound and half-life of ALC-0315 obtained from a 2-hour incubation with liver S9 from CD-1/ICR mouse, Sprague Dawley rat, cynomolgus monkey, and human is presented in <u>Table 1</u>. The stability of ALC-0315 over time in each matrix is shown in <u>Figure 1</u>. Raw data is presented in <u>Appendix 2</u>.

The liver S9 used in this study were tested for activity using metabolism control substrates under incubation conditions identical to those used for ALC-0315. The enzymes were found to exhibit satisfactory activity as determined by significant consumption of the positive control compounds (testosterone and 7-hydroxycoumarin) during the 2-hour incubation period, hence the test systems were considered to have yielded valid results. A summary of the % remaining parent compound and half-life of testosterone and 7-hydroxycoumarin is provided in <u>Table 1</u>. The stability of testosterone and 7-hydroxycoumarin over time in each matrix is shown in <u>Figure 2</u> and <u>Figure 3</u>, respectively. Raw data for controls is presented in <u>Appendix 3</u> (testosterone) and <u>Appendix 4</u> (7-hydroxycoumarin).

7. CONCLUSIONS

This study evaluated the *in vitro* metabolic stability of ALC-0315 in liver S9 fractions of CD-1/ICR mouse, Sprague Dawley rat, cynomolgus monkey, and human. ALC-0315 was stable after an approximately 2-hour incubation with liver S9 from all these species.

Compounds		Species		Percent Remaining (%)					
		species	0 min	15 min	30 min	60 min	90 min	120 min	(minute)
	CD-1/ICR	Mean	100.00	97.69	97.22	98.61	98.15	96.76	>120
	Mouse	RSD of Area Ratio	0.03	0.03	0.01	0.02	0.00	0.02	>120
	Sprague	Mean	100.00	98.85	99.62	99.62	98.85	98.46	. 120
ALC-0315	Dawley Rat	RSD of Area Ratio	0.03	0.03	0.06	0.06	0.05	0.03	>120
ALC-0315	Cynomolgus	Mean	100.00	99.57	96.96	99.13	98.70	99.57	. 120
	Monkey	RSD of Area Ratio	0.04	0.02	0.01	0.01	0.01	0.01	>120
	Human	Mean	100.00	95.99	97.32	94.98	98.33	99.33	. 130
	Tuman	RSD of Area Ratio	0.06	0.03	0.04	0.00	0.04	0.05	>120
	CD-1/ICR	Mean	100.00	59.38	35.71	6.89	BQL	BQL	15.5
	Mouse	RSD of Area Ratio	0.05	0.11	0.01	0.16	N/A	N/A	13.3
	Sprague	Mean	100.00	BQL	BQL	BQL	BQL	BQL	N/A
Testosterone	Dawley Rat	RSD of Area Ratio	0.05	N/A	N/A	N/A	N/A	N/A	
restosterone	Cynomolgus	Mean	100.00	81.12	68.58	45.76	27.19	16.74	46.6
	Monkey	RSD of Area Ratio	0.11	0.11	0.02	0.06	0.02	0.08	40.0
	Human	Mean	100.00	63.69	17.40	BQL	BQL	BQL	11.9
	numan	RSD of Area Ratio	0.00	0.02	0.09	N/A	N/A	N/A	11.9
	CD-1/ICR	Mean	100.00	40.06	16.68	3.57	1.89*	1.54*	12.5
	Mouse	RSD of Area Ratio	0.00	0.11	0.02	0.17	0.18	0.20	12.5
	Sprague	Mean	100.00	71.60	48.00	26.17*	13.71*	11.92*	28.3
7-Hydroxycoumarin	Dawley Rat	RSD of Area Ratio	0.08	0.04	0.07	0.06	0.00	0.04	20.3
	Cynomolgus	Mean	100.00	80.70	64.55	38.33	23.76	16.34	44.8
	Monkey	RSD of Area Ratio	0.04	0.04	0.05	0.00	0.01	0.04	44.0
	Human	Mean	100.00	69.01	43.17	19.16	8.29	3.68	25.0
	Tuman	RSD of Area Ratio	0.02	0.00	0.04	0.03	0.03	0.12	25.0

Table 1. Summary of Liver S9 Stability of ALC-0315 , Testosterone and 7-Hydroxycoumarin

* The compound showed biphasic metabolic kinetics, i.e., an initial fast disappearance phase was followed by a slow disappearance phase. The data points marked with * were in the slow disappearance phase and were excluded from half-life calculation. BQL = Below quantification limit; N/A = not applicable

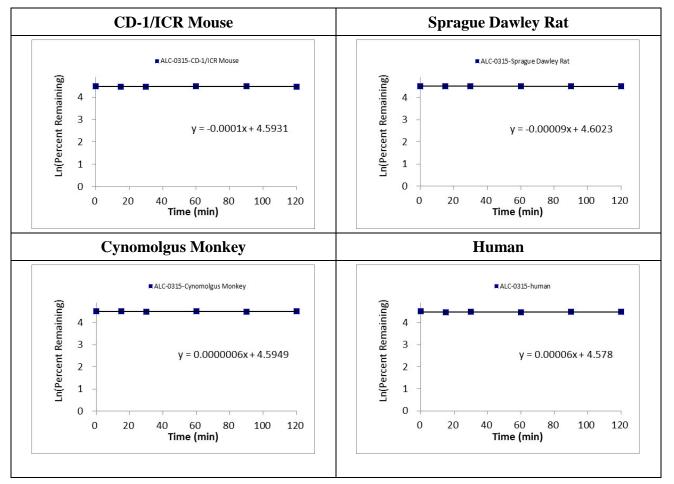


Figure 1. Stability of ALC-0315 in Mouse, Rat, Monkey and Human Liver S9

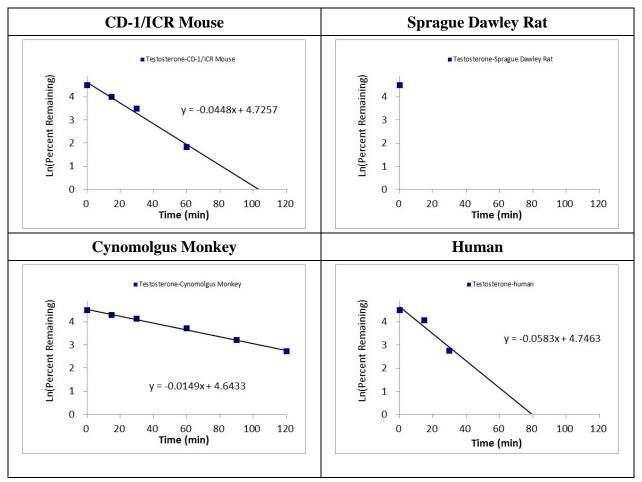


Figure 2. Stability of Testosterone in Mouse, Rat, Monkey and Human Liver S9

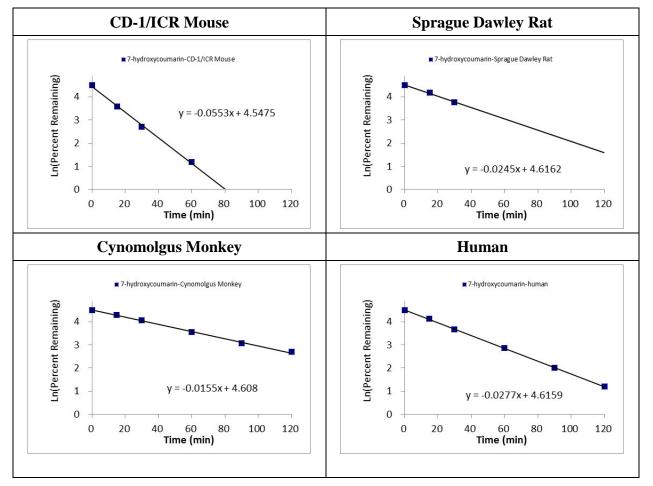
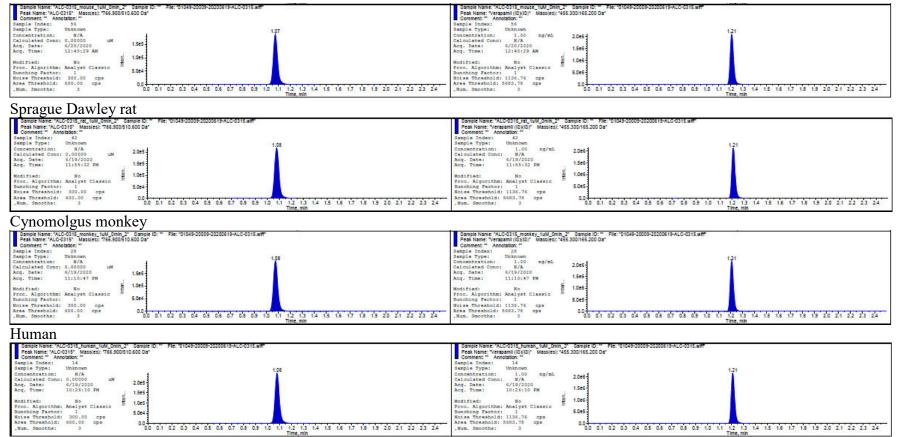


Figure 3. Stability of 7-Hydroxycoumarin in Mouse, Rat, Monkey and Human Liver S9

8. APPENDICES

- Appendix 1 Representative Chromatograms of ALC-0315 in Mouse, Rat, Monkey and Human Liver S9
- Appendix 2 Stability of ALC-0315 in Mouse, Rat, Monkey and Human Liver S9 Raw Data
- Appendix 3 Stability of Testosterone in Mouse, Rat, Monkey and Human Liver S9 Raw Data
- Appendix 4 Stability of 7-Hydroxycoumarin in Mouse, Rat, Monkey and Human Liver S9 Raw Data
- Appendix 5 01049-20009-S9 stability_protocol



APPENDIX 1

Representative Chromatograms of ALC-0315 in Mouse, Rat, Monkey and Human Liver S9

CD 1/ICR mouse

APPENDIX 2

Stability of ALC-0315 in Mouse, Rat, Monkey and Human Liver S9 - Raw Data

					Raw	Data		
Compounds	Species	Time(min)	Analyte	Analyte	IS Peak	IS Peak		
Compounds	Species		Peak Area	Peak Area	Area	Area	Area Ratio	Area Ratio
			(counts)	(counts)	(counts)	(counts)		
		0	4.33E+05	4.46E+05	4.08E+06	4.06E+06	0.106	0.110
		15	4.15E+05	4.49E+05	4.02E+06	4.15E+06	0.103	0.108
ALC-0315	CD-1/ICR	30	4.21E+05	4.47E+05	4.06E+06	4.23E+06	0.104	0.106
ALC-0315	Mouse	60	4.27E+05	4.48E+05	4.07E+06	4.15E+06	0.105	0.108
		90	4.47E+05	4.43E+05	4.23E+06	4.16E+06	0.106	0.106
		120	4.24E+05	4.44E+05	4.13E+06	4.17E+06	0.103	0.106
		0	5.23E+05	5.47E+05	4.12E+06	4.13E+06	0.127	0.133
	Sprague Dawley Rat	15	5.16E+05	5.37E+05	4.10E+06	4.11E+06	0.126	0.131
ALC-0315		30	5.10E+05	5.63E+05	4.12E+06	4.17E+06	0.124	0.135
ALC-0315		60	5.14E+05	5.59E+05	4.14E+06	4.15E+06	0.124	0.135
		90	5.22E+05	5.58E+05	4.20E+06	4.19E+06	0.124	0.133
		120	5.30E+05	5.50E+05	4.23E+06	4.22E+06	0.125	0.131
		0	4.57E+05	4.88E+05	4.07E+06	4.15E+06	0.112	0.118
		15	4.69E+05	4.90E+05	4.15E+06	4.21E+06	0.113	0.116
ALC-0315	Cynomolgus	30	4.60E+05	4.69E+05	4.13E+06	4.18E+06	0.111	0.112
ALC-0315	Monkey	60	4.66E+05	4.81E+05	4.13E+06	4.19E+06	0.113	0.115
		90	4.73E+05	4.82E+05	4.18E+06	4.23E+06	0.113	0.114
		120	4.86E+05	4.83E+05	4.22E+06	4.23E+06	0.115	0.114
		0	6.76E+05	6.00E+05	4.34E+06	4.20E+06	0.156	0.143
		15	6.28E+05	5.97E+05	4.27E+06	4.27E+06	0.147	0.140
ALC 0215	IIumon	30	6.60E+05	6.02E+05	4.41E+06	4.26E+06	0.150	0.141
ALC-0315	Human	60	6.17E+05	6.07E+05	4.34E+06	4.27E+06	0.142	0.142
		90	6.44E+05	6.03E+05	4.27E+06	4.21E+06	0.151	0.143
		120	6.44E+05	6.14E+05	4.17E+06	4.28E+06	0.154	0.143

APPENDIX 3

Stability of Testosterone in Mouse, Rat, Monkey and Human Liver S9 - Raw Data

			Raw Data						
Compounds	Species	Time(min)	Analyte	Analyte	IS Peak	IS Peak			
Compounds	species	Time(mm)	Peak Area	Peak Area	Area	Area	Area Ratio	Area Ratio	
			(counts)	(counts)	(counts)	(counts)			
		0	1.74E+04	1.71E+04	5.35E+05	5.68E+05	0.032	0.030	
		15	1.06E+04	1.16E+04	6.22E+05	5.77E+05	0.017	0.020	
Testosterone	CD-1/ICR	30	6.44E+03	6.29E+03	5.72E+05	5.69E+05	0.011	0.011	
restosterone	Mouse	60	1.10E+03	1.37E+03	5.79E+05	5.69E+05	0.002	0.002	
		90	LOD	LOD	5.84E+05	5.74E+05	LOD	LOD	
		120	LOD	LOD	5.70E+05	5.75E+05	LOD	LOD	
		0	1.52E+04	1.62E+04	6.17E+05	6.14E+05	0.025	0.026	
		15	LOD	LOD	6.05E+05	5.74E+05	LOD	LOD	
Testosterone	Sprague Dawley Rat	30	LOD	LOD	6.53E+05	5.96E+05	LOD	LOD	
restosterone		60	LOD	LOD	5.75E+05	5.65E+05	LOD	LOD	
		90	LOD	LOD	6.06E+05	5.80E+05	LOD	LOD	
		120	LOD	LOD	5.98E+05	6.00E+05	LOD	LOD	
		0	1.68E+04	1.43E+04	5.88E+05	5.86E+05	0.029	0.024	
		15	1.22E+04	1.32E+04	6.16E+05	5.72E+05	0.020	0.023	
Testosterone	Cynomolgus	30	1.08E+04	1.08E+04	6.04E+05	5.85E+05	0.018	0.018	
restosterone	Monkey	60	6.82E+03	7.12E+03	5.88E+05	5.64E+05	0.012	0.013	
		90	4.29E+03	4.11E+03	5.87E+05	5.79E+05	0.007	0.007	
		120	2.78E+03	2.38E+03	5.94E+05	5.69E+05	0.005	0.004	
		0	1.66E+04	1.57E+04	5.95E+05	5.63E+05	0.028	0.028	
		15	1.02E+04	1.05E+04	5.81E+05	5.81E+05	0.018	0.018	
T ()	Human	30	3.05E+03	2.85E+03	5.88E+05	6.27E+05	0.005	0.005	
Testosterone	пишан	60	LOD	LOD	5.92E+05	5.75E+05	LOD	LOD	
		90	LOD	LOD	6.07E+05	6.32E+05	LOD	LOD	
		120	LOD	LOD	5.50E+05	5.76E+05	LOD	LOD	

LOD = Limit of detection

APPENDIX 4

Stability of 7-Hydroxycoumarin in Mouse, Rat, Monkey and Human Liver S9 - Raw Data

					Raw	Data		
Compounds	Species	Time	Analyte	Analyte	IS Peak	IS Peak	Area	Area
Compounds	Species	(min)	Peak Area	Peak Area	Area	Area	Ratio	Ratio
			(counts)	(counts)	(counts)	(counts)	Katio	Katio
		0	2.69E+04	2.63E+04	5.42E+05	5.29E+05	0.050	0.050
		15	1.20E+04	1.01E+04	5.59E+05	5.52E+05	0.021	0.018
7-	CD-1/ICR	30	4.62E+03	4.53E+03	5.49E+05	5.54E+05	0.008	0.008
Hydroxycoumarin	Mouse	60	1.11E+03	8.20E+02	5.54E+05	5.27E+05	0.002	0.002
		90	5.99E+02	4.34E+02	5.62E+05	5.30E+05	0.001	0.001
		120	3.69E+02	4.87E+02	5.59E+05	5.58E+05	0.001	0.001
		0	2.60E+04	2.51E+04	5.20E+05	5.61E+05	0.050	0.045
		15	1.88E+04	1.82E+04	5.37E+05	5.52E+05	0.035	0.033
7-	Sprague Dawley Rat	30	1.29E+04	1.20E+04	5.39E+05	5.52E+05	0.024	0.022
Hydroxycoumarin		60	6.94E+03	6.43E+03	5.38E+05	5.40E+05	0.013	0.012
		90	3.57E+03	3.60E+03	5.49E+05	5.56E+05	0.007	0.006
		120	2.92E+03	3.11E+03	5.32E+05	5.34E+05	0.005	0.006
		0	2.46E+04	2.60E+04	5.32E+05	5.32E+05	0.046	0.049
		15	2.18E+04	2.06E+04	5.53E+05	5.50E+05	0.039	0.037
7-	Cynomolgus	30	1.65E+04	1.74E+04	5.57E+05	5.45E+05	0.030	0.032
Hydroxycoumarin	Monkey	60	9.83E+03	9.77E+03	5.40E+05	5.35E+05	0.018	0.018
		90	6.29E+03	6.06E+03	5.52E+05	5.40E+05	0.011	0.011
		120	4.19E+03	4.03E+03	5.23E+05	5.34E+05	0.008	0.008
		0	2.65E+04	2.65E+04	5.32E+05	5.16E+05	0.050	0.051
		15	1.88E+04	1.83E+04	5.37E+05	5.24E+05	0.035	0.035
7-	T.T	30	1.23E+04	1.15E+04	5.49E+05	5.42E+05	0.022	0.021
Hydroxycoumarin	Human	60	5.42E+03	5.06E+03	5.48E+05	5.33E+05	0.010	0.009
		90	2.28E+03	2.37E+03	5.55E+05	5.52E+05	0.004	0.004
		120	9.57E+02	1.11E+03	5.60E+05	5.53E+05	0.002	0.002

APPENDIX 5

01049-20009-S9 stability_protocol

In Vitro Metabolic Stability of ALC-0315 in CD-1/ICR Mouse, Sprague Dawley Rat, Cynomolgus Monkey, and Human Liver S9 Fractions

Testing Facility Medicilon Preclinical Research (Shanghai) LLC 585 Chuanda Road, Pudong Shanghai 201299, China

Study Number 01049-20009

Study Director (b) (6)

Sponsor Acuitas Therapeutics Inc.

FDA-CBER-2021-5683-0709271

CONTENTS

1. IN7	TRODUCTION	.3
1.1.	Study Number	.3
1.2.	Study Title	.3
1.3.	Sponsor Representative	.3
1.4.	Objective	.3
1.5.	Compliance	.3
1.6.	Testing Facility	.3
1.7.	Personnel	
1.8.	Study Schedule	.4
2. MA	TERIALS	.4
2.1.	Test Article	.4
2.2.	Positive Control and Internal Standard	.4
2.3.	Liver Microsomes and Cofactor	.4
3. EX	PERIMENTAL PROCEDURES	.5
4. BIC	DANALYSIS	.6
4.1.	Instruments	.6
4.2.	LC/MS/MS Conditions	.6
5. DA	TA ANALYSIS	.7
6. FIN	VAL REPORT	.7
7. SIC	SNATURES	.8

1. INTRODUCTION

1.1. Study Number

01049-20009

1.2. Study Title

In Vitro Metabolic Stability of ALC-0315 in CD-1/ICR Mouse, Sprague Dawley Rat, Cynomolgus Monkey, and Human Liver S9 Fractions

1.3. Sponsor Representative

(b) (6)

Acuitas Therapeutics Inc.

6190 Agronomy Road, Suite 402

Vancouver BC V6T 1Z3

Canada

(b) (6)

1.4. Objective

To evaluate the *in vitro* metabolic stability of ALC-0315 in liver S9 from different species.

1.5. Compliance

This is a non-GLP study and will be conducted according to the Standard Operating Procedures (SOPs) of Medicilon Preclinical Research (Shanghai) LLC.

1.6. Testing Facility

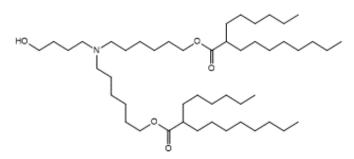
Medicilon Preclinical Research (Shanghai) LLC 585 Chuanda Road, Pudong, Shanghai 210299, China

1.7. Personnel

1.7.1. Study Director

(b) (6)

1.7.2. Alternate Contact


1.8. Study Schedule

Study Initiation Date:	Signature date by Study Director
Experiment Start Date:	To be included in the final report
Experiment Termination Date:	To be included in the final report
Draft Report Issue Date:	To be included in the final report

2. MATERIALS

2.1. Test Article

Name: ALC-0315 Molecular Formula: C₄₈H₉₅NO₅ MW (g/mol): 766.27 Exact Mass: 765.72

2.2. Positive Control and Internal Standard

Testosterone and 7-hydroxycoumarin will be used as positive controls. Verapamil will be used as internal standard. The sources will be documented in experimental records and presented in the report.

2.3. Liver Microsomes and Cofactor

Liver S9 fractions of CD-1/ICR mouse, Sprague Dawley rat, cynomolgus monkey and human were purchased from qualified supplier and stored in a -70°C ultra low temperature freezer.

NADPH (reduced β -Nicotinamide adenine dinucleotide 2'-phosphate tetrasodium salt) were purchased from qualified supplier and stored at 2-8°C in a refrigerator.

UDPGA (uridine-diphosphate-glucuronic acid trisodium salt) and alamethicin were purchased from qualified suppliers and stored in a -20°C freezer.

The source and lot numbers will be documented in the experimental records and presented in the final report.

3. EXPERIMENTAL PROCEDURES

- (1) Preparation of stock solutions: Appropriate amount of test article or positive control is weighed and dissolved in DMSO to obtain a 10 mM stock solution.
- (2) Preparation of 0.5 mM spiking solutions:

Spiking Solution of Test Article or Positive Control							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
10 mM	10	190	0.5 mM				

(3) Preparation of 1.5× liver S9 suspensions with alamethicin containing test article or positive control:

1.5×1	1.5× Liver S9 Suspension with Alamethicin containing Test article or Positive control									
Livers S9				100 mM potassium	Final Concentration					
Conc. of stock solution (mg/mL)	Volume of stock solution (μL)	0.5 mM spiking solution (μL)	10 mg/ml Alamethicin	phosphate buffer containing 5 mM of MgCl ₂ (pH 7.4) (µL)	Liver S9 protein (mg/mL)	Compound (µM)				
20	37.5	1.5	1.9	459.1	1.5	1.5				

- (4) 1.5× liver S9 suspensions with alamethicin containing test article or positive control are kept on ice for 15 minutes.
- (5) 3× master mix of cofactors (6 mM NADPH and 3 mM UDPGA in 100 mM potassium phosphate buffer containing 5 mM of MgCl₂, pH7.4) is prepared and then pre-warmed to 37°C.
- (6) 30 μL of liver S9 suspension with alamethicin containing 1.5 μM test article or positive control is added to 96-well plates in duplicate for each time point (0, 15, 30, 60, 90, and 120 min).
- (7) 96-well incubation plates (from Step 6) are pre-warmed at 37 °C for 5 min.

- (8) For 0-min samples: 450 μ L ethanol containing internal standard (IS solution) is added, followed by 15 μ L pre-warmed 3× master mix of cofactors.
- (9) For the 15, 30, 60, 90, and 120 min samples, 15 μL pre-warmed 3× master mix of cofactors is added to initiate reaction.

Volume of final incubation system (µL)			Final Concentration			
1.5× Liver S9 Suspension with Alamethicin containing Test article or Positive control	3× Master Mix of Cofactors	Total Volume	Liver S9 protein (mg/mL)	Compound (µM)	UDPGA (mM)	NADPH (mM)
30	15	45	1	1	1	2

The samples are incubated at 37 °C and 450 μ L IS solution (10ng/mL verapamil in ethanol) is added to stop the reaction at the corresponding time points (15, 30, 60, 90, and 120 min).

- (10) After quenching, shake the plates at 600 rpm for 10 min and then centrifuge them at 6,000 rpm for 15 min.
- (11) The plates are sealed and stored at -20 $^{\circ}$ C in a freezer until bioanalysis.
- (12) Thaw the plates at room temperature, centrifuge them at 6,000 rpm for 15 min, then transfer 200 μ L of the supernatant from each well into a 96-well sample plate for LC-MS/MS analysis.

4. **BIOANALYSIS**

4.1. Instruments

Waters Acquity UPLC system Sciex Triple Quad 6500+ with ESI ion source

4.2. LC/MS/MS Conditions

Column: ACQUITY UPLC BEH HILIC 1.7µm (2.1*100mm)

Gradient Chromatography Parameters for ALC-0315:

Time (min)	Solvent A (%)	Solvent B (%)
0.01	5	95
1.50	40	60
2.00	40	60
2.01	5	95
2.50	5	95

Solvent A: 10mM ammonium formate, 0.1% Formic acid in water

Solvent B: 10mM ammonium formate, 0.1% Formic acid in acetonitrile

Flow rate: 500 µL/min

Column temperature: 40 °C

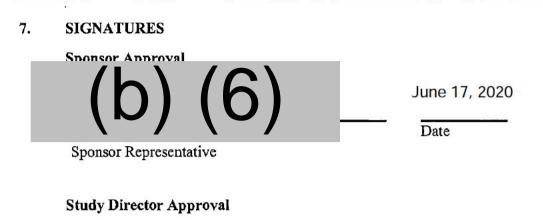
Autosampler temperature: 4°C

MS Conditions: MRM detection

Compound	Q1(m/z)	Q3(m/z)	DP	CE	Retention
ALC-0315	766.90	510.60	100	66	~1.07
Verapamil	455.30	165.20	49	28	~1.19

5. DATA ANALYSIS

The % remaining will be calculated by dividing the peak area ratio (test article peak area/ internal standard peak area) by the time zero peak area ratio. The natural logarithm of % remaining will be plotted against time, and the slope of the regression line will be determined. Then elimination constant and half-life will be calculated as below.


Elimination rate constant (k) = - slope

Half-life $(t_{1/2}) = 0.693/k$

6. FINAL REPORT

After completion of the study, a draft report including the results, analysis and discussion will be sent to the Sponsor in Microsoft Word format.

One month after issuance of the draft report, if no requested revisions or instructions to finalize have been communicated by the Sponsor, the draft report will be issued as a final report, signed by the Study Director, and submitted to the Sponsor in Adobe Acrobat PDF format, containing hyperlinks, as applicable. Any modifications or changes to the draft report requested one month after issuance of the draft will be performed at additional cost to the Sponsor.

(b) (6) Study Director

20/06/17 Date