

# *In Vitro* Metabolic Stability of ALC-0159 in CD-1/ICR Mouse, Sprague Dawley Rat, Wistar Han Rat, Cynomolgus Monkey, and Human Liver Microsomes

|                              | 1                                                        |  |  |  |
|------------------------------|----------------------------------------------------------|--|--|--|
| Sponsor                      | Acuitas Therapeutics Inc.                                |  |  |  |
|                              | 6190 Agronomy Road, Suite 402                            |  |  |  |
|                              | Vancouver BC V6T 1Z3                                     |  |  |  |
|                              | Canada                                                   |  |  |  |
| Testing Facility             | Medicilon Preclinical Research (Shanghai) LLC            |  |  |  |
|                              | 585 Chuanda Rd, Pudong                                   |  |  |  |
|                              | Shanghai 201299                                          |  |  |  |
|                              | China                                                    |  |  |  |
| Study Monitor                | (b) (6)                                                  |  |  |  |
|                              | Acuitas Therapeutics Inc.                                |  |  |  |
|                              | (h) (6)                                                  |  |  |  |
|                              |                                                          |  |  |  |
| Study Director               | (b) (6)                                                  |  |  |  |
|                              | Medicilon Preclinical Research (Shanghai) LLC<br>(b) (6) |  |  |  |
|                              |                                                          |  |  |  |
| Alternate Contact            | (b) (6)                                                  |  |  |  |
|                              | Medicilon Preclinical Research (Shanghai) LLC<br>(b) (6) |  |  |  |
|                              |                                                          |  |  |  |
| Study Identification         | 01049-20020                                              |  |  |  |
| Experimental Start Date      | 2020-06-04                                               |  |  |  |
| Experimental Completion Date | 2020-06-08                                               |  |  |  |
| Number of Pages in Report    | 28                                                       |  |  |  |



# TABLE OF CONTENTS

| SUMMARY                           | 3  |
|-----------------------------------|----|
| SIGNATURES                        | 4  |
| 1. OBJECTIVE                      | 5  |
| 2. MATERIALS                      | 5  |
| 2.1 Test Article                  | 5  |
| 2.2 Positive Control              | 5  |
| 2.3 Internal Standard             | 5  |
| 2.4 Liver Microsomes and Cofactor | 5  |
| 2.5 Coenzyme                      | 6  |
| 3. EXPERIMENTAL PROCEDURES        | 6  |
| 4. BIOANALYSIS                    | 7  |
| 4.1 Instruments                   | 7  |
| 4.2 LC/MS/MS Conditions           | 8  |
| 4.3 Detection of ALC-0159         | 8  |
| 5. DATA ANALYSIS                  | 8  |
| 6. RESULTS                        | 9  |
| 7. CONCLUSIONS                    | 9  |
| 8. APPENDICES                     | 13 |



# SUMMARY

This study evaluated the *in vitro* metabolic stability of ALC-0159 in liver microsomes of CD-1/ICR mouse, Sprague Dawley rat, Wistar Han rat, cynomolgus monkey, and human. ALC-0159 was stable after an approximately 2-hour incubation with liver microsomes from all these species.



# SIGNATURES

#### Compliance

This was a non-GLP study and was not conducted under full compliance with Good Laboratory Practice (GLP) regulations. Analyses were conducted according to an approved protocol and Standard Operating Procedures (SOPs) of Medicilon Preclinical Research (Shanghai) LLC. All data are documented in analysts' laboratory notebooks and electronic document management systems of Medicilon Preclinical Research (Shanghai) LLC. The content of this report has been reviewed against the raw data listings, summary tables and protocol for accuracy of the report.

Study Director Approval:

(b) (6)

Study Director

Sponsor Approval:

(b) (6) Study Monitor

August 4, 2020

2020 /08 /04 Date

Date



#### **1. OBJECTIVE**

To evaluate the in vitro metabolic stability of ALC-0159 in liver microsomes from different species.

# 2. MATERIALS

#### 2.1 Test Article

Name: ALC-0159

Molecular Formula:  $C_{30}H_{60}NO (C_2H_4O)_nOCH_3$  n = 45-50

MW (g/mol): ~2400-2600



## **2.2 Positive Control**

| Compound<br>Name | Vendor | CAS No.    | Cat. No. | Lot No.  | Molecular Weight |
|------------------|--------|------------|----------|----------|------------------|
| Ketanserin       | TCI    | 74050-98-9 | K0051    | NPGAF-CO | 395.43           |

## 2.3 Internal Standard

| Compound<br>Name | Vendor            | CAS No. | Cat. No. | Lot No.  | Molecular Weight |
|------------------|-------------------|---------|----------|----------|------------------|
| Tolbutamide      | Sigma-<br>Aldrich | 64-7-7  | 46968    | BCBV8457 | 270.35           |

## 2.4 Liver Microsomes and Cofactor

The following pooled liver microsomes of CD-1/ICR mouse, Sprague Dawley rat, Wistar Han rat, cynomolgus monkey, and human were stored in a -70°C ultra low temperature freezer prior to use.



| Species                   | Manufacturer  | Cat. No.   | Lot No.   | Protein<br>Concentration<br>(mg/mL) |
|---------------------------|---------------|------------|-----------|-------------------------------------|
| CD-1/ICR mouse (male)     | XenoTech      | M1000      | 1910002   | 20                                  |
| Sprague Dawley rat (male) | XenoTech      | R1000      | 1910100   | 20                                  |
| Wistar Han rat            | BioIVT        | BCF        | 201801BCF | 20                                  |
| Cynomolgus monkey (male)  | RILD Shanghai | LM-SXH-02M | NXNN      | 20                                  |
| Human (mixed gender)      | XenoTech      | H0610      | 1810003   | 20                                  |

#### 2.5 Coenzyme

NADPH (reduced  $\beta$ -nicotinamide adenine dinucleotide 2'-phosphate) tetrasodium salt was stored at 2-8°C in a refrigerator prior to use.

| Compound Name | Manufacturer     | Cat. No.    | Molecular Weight | Purity |
|---------------|------------------|-------------|------------------|--------|
| NADPH         | Roche Diagnostic | 10621706001 | 833.35           | 97%    |

#### **3. EXPERIMENTAL PROCEDURES**

3.1 Stock solution: 1.90 mg of ALC-0159 was weighed and dissolved in 76 μL of DMSO to obtain a 10 mM stock solution. 3.237 mg of ketanserin was weighed and dissolved in 818.60 μL of DMSO to obtain a 10 mM stock solution.

#### **3.2** 0.5 mM spiking solution:

| Spiking Solution of Test Article or Positive Control |                                                                                                              |  |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Conc. of stock solution<br>(mM)                      | Conc. of stock solution<br>(mM)Volume of stock solution<br>(µL)Volume of MeOH<br>(µL)Final Concentration<br> |  |  |  |  |  |
| 10 10 190 0.5                                        |                                                                                                              |  |  |  |  |  |

**3.3** 1.5× liver microsomes suspension containing test article or positive control:

| 1.5× Liver Microsomes Suspension Containing Test Article or Positive Control |                                       |                             |                                   |                                        |                  |
|------------------------------------------------------------------------------|---------------------------------------|-----------------------------|-----------------------------------|----------------------------------------|------------------|
| Liver M                                                                      | licrosomes                            | 0.5 mM                      | 100 mM potassium                  | Final Concentration                    |                  |
| Conc. of stock<br>suspension<br>(mg/mL)                                      | Volume of stock<br>suspension<br>(µL) | spiking<br>solution<br>(µL) | phosphate buffer (pH 7.4)<br>(µL) | Liver microsomal<br>protein<br>(mg/mL) | Compound<br>(µM) |
| 20                                                                           | 18.75                                 | 1.5                         | 479.75                            | 0.75                                   | 1.5              |



- **3.4** 22.98 mg of NADPH was weighed and dissolved in 4.596 mL of 100 mM potassium phosphate buffer to obtain a 6 mM NADPH working solution. This working solution was then pre-warmed at 37°C.
- **3.5** 30  $\mu$ L of 1.5× liver microsomes suspension containing test article or positive control was added to 96-well plates in duplicate for each time point (0, 15, 30, 60, 90, and 120 min).
- 3.6 96-well incubation plates were pre-warmed at 37 °C for 5 min.
- **3.7** For 0-min samples: 450 μL of ethanol containing internal standard (IS solution) was added before 15 μL of pre-warmed NADPH working solution (6 mM) was added.
- **3.8** For other samples (15, 30, 60, 90, and 120 min): 15 μL of pre-warmed NADPH working solution (6 mM) was added to initiate the reaction.

| Volume (µL)                                                                        |                                |       | Final Concentration in Incubation Mixture |                                             |            |
|------------------------------------------------------------------------------------|--------------------------------|-------|-------------------------------------------|---------------------------------------------|------------|
| 1.5× Liver Microsomes<br>Suspension Containing Test<br>Article or Positive Control | 3×NADPH<br>working<br>solution | Total | Liver microsomal<br>protein<br>(mg/mL)    | Test Article or<br>Positive Control<br>(µM) | NADPH (mM) |
| 30                                                                                 | 15                             | 45    | 0.5                                       | 1                                           | 2          |

The samples were incubated at 37 °C and 450  $\mu$ L of IS solution was added to stop the reaction at the corresponding time points (15, 30, 60, 90, and 120 min).

- **3.9** After quenching, the plates were shaken at 600 rpm for 10 min and then centrifuged at 6,000 rpm for 15 min.
- 3.10 200 μL of supernatant was transferred from each well into a 96-well sample plate for LC-MS/MS analysis.

## 4. BIOANALYSIS

#### **4.1 Instruments**

SHIMADZU: UPLC system

Sciex Triple Quad 6500+ with ESI ion source



#### 4.2 LC/MS/MS Conditions

Column: Agilent Zorbax SB-CN 3.5um (100mm\*2.1mm)

Gradient for ALC-0159:

| Time (min) | Solvent A (%) | Solvent B (%) |
|------------|---------------|---------------|
| 0.00       | 80            | 20            |
| 0.40       | 30            | 70            |
| 1.60       | 10            | 90            |
| 2.70       | 10            | 90            |
| 2.71       | 80            | 20            |
| 3.00       | 80            | 20            |

Solvent A: 0.1% formic acid in water

Solvent B: 0.1% formic acid in acetonitrile

Flow rate: 600 µL/min

Column temperature: 40 °C

Autosampler temperature: 4°C

MS Conditions: MRM detection

| Compound        | Q1(m/z) | Q3(m/z) | DP | CE | Retention Time |
|-----------------|---------|---------|----|----|----------------|
| ALC-0159        | 1164.00 | 494.70  | 45 | 71 | ~1.31          |
| Tolbutamide(IS) | 271.10  | 172.00  | 70 | 18 | ~1.01          |

#### 4.3 Detection of ALC-0159

Representative chromatograms of ALC-0159 in each matrix are shown in <u>Appendix 1</u>.

#### **5. DATA ANALYSIS**

The % remaining parent compound (ALC-0159 or positive control, ketanserin) was calculated by dividing the peak area ratio (test article peak area/internal standard peak area) by the time zero peak area ratio. The natural logarithm of % remaining parent compound was plotted against time, and the slope of the regression line was determined. The elimination constant and half-life was calculated, when possible, as indicated below.

Elimination rate constant (k) = - slope

## Half-life $(t_{1/2}) = 0.693/k$

The *in vitro* intrinsic clearance,  $CL'_{int}$ , was calculated from the  $t_{1/2}$  as follows:

 $CL'_{int} = (0.693/t_{1/2}) \times (1/(microsomal protein concentration (0.5 mg/mL))) \times Scaling Factor$ 



The scaling factors are listed in Table 1.

Table 1. Scaling Factors for Intrinsic Clearance Predictionin Mouse, Rat, Monkey, and Human Liver Microsomes

| Spacios | Microsomal Protein (mg) | Liver Weight (g) per | Scaling Factor       | Hepatic Blood Flow |
|---------|-------------------------|----------------------|----------------------|--------------------|
| species | per Gram of Liver       | kg Body Weight       | (mg/kg) <sup>a</sup> | (mL/min/kg)        |
| Mouse   | 45                      | 87.5                 | 3937.5               | 90                 |
| Rat     | 44.8                    | 40                   | 1792                 | 55.2               |
| Monkey  | 45                      | 32.5                 | 1462.5               | 44                 |
| Human   | 48.8                    | 25.7                 | 1254.2               | 20.7               |

<sup>a</sup>Microsomal protein (mg/g liver)  $\times$  liver weight (g)/kg body weight

#### 6. RESULTS

A summary of the % remaining parent compound, CL'<sub>int</sub> and half-life of ALC-0159 obtained from a 2-hour incubation of ALC-0159 with liver microsomes from CD-1/ICR mouse, Sprague Dawley rat, Wistar Han rat, cynomolgus monkey, and human is presented in <u>Table 2</u>. The stability of ALC-0159 over time in each matrix is shown in <u>Figure 1</u>. Raw data is presented in <u>Appendix 2</u>.

The liver microsomes used in this study were tested for activity using a metabolism control substrate under incubation conditions identical to those used for ALC-0159. The enzymes were found to exhibit satisfactory activity as determined by significant consumption of the positive control compound (ketanserin) during the 2-hour incubation period, hence the test systems were considered to have yielded valid results. A summary of the % remaining parent compound, CL'<sub>int</sub> and half-life of ketanserin is provided in <u>Table 2</u>. The stability of ketanserin over time in each matrix is shown in <u>Figure 2</u>. Raw data is presented in <u>Appendix 3</u>.

#### 7. CONCLUSIONS

This study evaluated the *in vitro* metabolic stability of ALC-0159 in liver microsomes of CD-1/ICR mouse, Sprague Dawley rat, Wistar Han rat, cynomolgus monkey, and human. ALC-0159 was stable after an approximately 2-hour incubation with liver microsomes from all these species.



| Test       | Spacies                   |                   | Percent Remaining (%) |        |        |        |        |         | t <sub>1/2</sub> | CL'int      |
|------------|---------------------------|-------------------|-----------------------|--------|--------|--------|--------|---------|------------------|-------------|
| Article    | speci                     | 108               | 0 min                 | 15 min | 30 min | 60 min | 90 min | 120 min | (minute)         | (mL/min/kg) |
|            | CD 1/ICD                  | Mean              | 100.00                | 82.27  | 86.40  | 85.54  | 85.41  | 95.87   | × 1 <b>2</b> 0   | <45.5       |
|            | CD-1/ICK mouse            | RSD of Area Ratio | 0.07                  | 0.09   | 0.11   | 0.01   | 0.05   | 0.18    | >120             |             |
|            | Samo on a Davilar sat     | Mean              | 100.00                | 101.24 | 93.78  | 98.34  | 95.44  | 97.10   | . 130            | <20.7       |
|            | Sprague Dawley rat        | RSD of Area Ratio | 0.09                  | 0.03   | 0.08   | 0.03   | 0.05   | 0.11    | >120             |             |
| ALC 0150   | Wiston Hon not            | Mean              | 100.00                | 112.11 | 102.69 | 105.38 | 100.90 | 108.97  | > 120            | <20.7       |
| ALC-0159   | wistar Han rat            | RSD of Area Ratio | 0.01                  | 0.06   | 0.06   | 0.01   | 0.04   | 0.13    | >120             | <20.7       |
|            | Crmomolous montror        | Mean              | 100.00                | 100.83 | 85.12  | 86.36  | 94.63  | 93.39   | . 130            | <16.9       |
| -          | Cynomolgus monkey         | RSD of Area Ratio | 0.06                  | 0.07   | 0.03   | 0.03   | 0.04   | 0.05    | >120             |             |
|            | Human                     | Mean              | 100.00                | 99.59  | 92.28  | 95.53  | 97.97  | 93.09   | . 130            | <14.5       |
|            |                           | RSD of Area Ratio | 0.01                  | 0.11   | 0.03   | 0.05   | 0.02   | 0.02    | >120             |             |
|            | CD-1/ICR mouse            | Mean              | 100.00                | 61.73  | 37.16  | 17.24* | 10.16* | 6.43*   | - 21.0           | 260         |
|            |                           | RSD of Area Ratio | 0.04                  | 0.01   | 0.02   | 0.05   | 0.01   | 0.05    |                  |             |
|            | Spragua Davilay rat       | Mean              | 100.00                | 74.03  | 51.43  | 26.11  | 16.08* | 10.01*  | 20.7             | 80.9        |
|            | Sprague Dawley fat        | RSD of Area Ratio | 0.04                  | 0.02   | 0.03   | 0.05   | 0.03   | 0.03    | 30.7             |             |
| Vatanganin | Wiston Hon not            | Mean              | 100.00                | 54.03  | 25.10  | 6.76   | 2.35   | 1.18*   | 16.4             | 1.51        |
| Ketansenn  | wistai maii fat           | RSD of Area Ratio | 0.02                  | 0.02   | 0.01   | 0.07   | 0.04   | 0.06    | 16.4             | 131         |
|            | Cum ann al anna an amhann | Mean              | 100.00                | 71.44  | 47.42  | 24.00  | 13.05* | 8.35*   | 28.0             | 70.1        |
|            | Cynomolgus monkey         | RSD of Area Ratio | 0.03                  | 0.02   | 0.01   | 0.02   | 0.04   | 0.02    | 28.9             | /0.1        |
|            | Humon                     | Mean              | 100.00                | 77.74  | 57.56  | 38.26  | 26.22* | 24.46*  | 42.1             | 40.2        |
|            | Human                     | RSD of Area Ratio | 0.09                  | 0.01   | 0.01   | 0.04   | 0.12   | 0.05    | 43.1             | 40.3        |

#### Table 2. Summary of Liver Microsomal Stability of ALC-0159 and Ketanserin

\* Compound showed biphasic metabolic kinetics, i.e., an initial fast disappearance phase was followed by a slow disappearance phase. The data points marked in \* were in the slow disappearance phase and were excluded from half-life calculation.















#### **8. APPENDICES**

- Appendix 1 Representative Chromatograms of ALC-0159 in Mouse, Rat, Monkey and Human Liver Microsomes
- Appendix 2 Stability of ALC-0159 in Mouse, Rat, Monkey and Human Liver Microsomes Raw Data
- Appendix 3 Stability of Ketanserin in Mouse, Rat, Monkey and Human Liver Microsomes Raw Data
- Appendix 4 –01049-20020-microsomal stability protocol



# **APPENDIX 1**

Representative Chromatograms of ALC-0159 in Mouse, Rat, Monkey and Human Liver Microsomes



#### CD-1/ICR mouse



16 1.8

1.0 12 1.4 Time.

Ares Threshold: 1.44e4 cps

2.8

1.2 1.4 1. Time, min 16



# **APPENDIX 2**

Stability of ALC-0159 in Mouse, Rat, Monkey and Human Liver Microsomes - Raw Data



|          |                   |           | Raw Data  |           |                      |                      |               |               |
|----------|-------------------|-----------|-----------|-----------|----------------------|----------------------|---------------|---------------|
| Compound | Species           | Time(min) | Analyte   | Analyte   | IS Peak              | IS Peak              |               |               |
| 1        | 1                 |           | Peak Area | Peak Area | Area                 | Area                 | Area<br>Patio | Area<br>Patio |
|          |                   | 0         | 2.04F+04  | 2.24F+04  | 1.77E+07             | 1.77F+07             | 0.001         | 0.001         |
|          |                   | 15        | 1.43E+04  | 1 88E+04  | 1.77E+07<br>1 54E+07 | 1.77E+07<br>1 78E+07 | 0.001         | 0.001         |
|          | CD 1/ICP          | 30        | 2.04E+04  | 1.50E+04  | 1.80E+07             | 1.56E+07             | 0.001         | 0.001         |
| ALC-0159 | mouse             | 60        | 1.88E+04  | 1.85E+04  | 1.83E+07             | 1.79E+07             | 0.001         | 0.001         |
|          |                   | 90        | 1.80E+04  | 1.90E+04  | 1.81E+07             | 1.78E+07             | 0.001         | 0.001         |
|          |                   | 120       | 1.88E+04  | 2.31E+04  | 1.86E+07             | 1.77E+07             | 0.001         | 0.001         |
|          |                   | 0         | 2.03E+04  | 2.23E+04  | 1.79E+07             | 1.74E+07             | 0.001         | 0.001         |
|          |                   | 15        | 2.12E+04  | 2.24E+04  | 1.79E+07             | 1.78E+07             | 0.001         | 0.001         |
|          | Sprague           | 30        | 1.93E+04  | 2.16E+04  | 1.81E+07             | 1.81E+07             | 0.001         | 0.001         |
| ALC-0159 | Dawley rat        | 60        | 2.01E+04  | 2.11E+04  | 1.74E+07             | 1.75E+07             | 0.001         | 0.001         |
|          |                   | 90        | 1.97E+04  | 2.08E+04  | 1.78E+07             | 1.75E+07             | 0.001         | 0.001         |
|          |                   | 120       | 1.95E+04  | 2.17E+04  | 1.81E+07             | 1.72E+07             | 0.001         | 0.001         |
|          | Wistar Han<br>rat | 0         | 1.97E+04  | 1.98E+04  | 1.78E+07             | 1.76E+07             | 0.001         | 0.001         |
|          |                   | 15        | 2.27E+04  | 2.13E+04  | 1.75E+07             | 1.77E+07             | 0.001         | 0.001         |
|          |                   | 30        | 2.00E+04  | 2.15E+04  | 1.82E+07             | 1.81E+07             | 0.001         | 0.001         |
| ALC-0159 |                   | 60        | 2.06E+04  | 2.09E+04  | 1.77E+07             | 1.77E+07             | 0.001         | 0.001         |
|          |                   | 90        | 1.96E+04  | 1.94E+04  | 1.70E+07             | 1.78E+07             | 0.001         | 0.001         |
|          |                   | 120       | 2.27E+04  | 1.89E+04  | 1.71E+07             | 1.72E+07             | 0.001         | 0.001         |
|          |                   | 0         | 2.31E+04  | 2.12E+04  | 1.83E+07             | 1.83E+07             | 0.001         | 0.001         |
|          |                   | 15        | 2.14E+04  | 2.36E+04  | 1.84E+07             | 1.85E+07             | 0.001         | 0.001         |
| ALC 0150 | Cynomolgus        | 30        | 2.00E+04  | 1.91E+04  | 1.91E+07             | 1.90E+07             | 0.001         | 0.001         |
| ALC-0159 | monkey            | 60        | 1.90E+04  | 2.03E+04  | 1.86E+07             | 1.89E+07             | 0.001         | 0.001         |
|          |                   | 90        | 2.08E+04  | 2.14E+04  | 1.88E+07             | 1.82E+07             | 0.001         | 0.001         |
|          |                   | 120       | 2.04E+04  | 2.18E+04  | 1.87E+07             | 1.86E+07             | 0.001         | 0.001         |
|          |                   | 0         | 2.23E+04  | 2.15E+04  | 1.80E+07             | 1.76E+07             | 0.001         | 0.001         |
|          |                   | 15        | 2.30E+04  | 2.02E+04  | 1.74E+07             | 1.79E+07             | 0.001         | 0.001         |
|          | II                | 30        | 2.08E+04  | 2.02E+04  | 1.80E+07             | 1.82E+07             | 0.001         | 0.001         |
| ALC-0159 | numan             | 60        | 2.03E+04  | 2.13E+04  | 1.80E+07             | 1.75E+07             | 0.001         | 0.001         |
|          |                   | 90        | 2.14E+04  | 2.10E+04  | 1.75E+07             | 1.76E+07             | 0.001         | 0.001         |
|          |                   | 120       | 2.01E+04  | 2.01E+04  | 1.77E+07             | 1.74E+07             | 0.001         | 0.001         |

#### Stability of ALC-0159 in Mouse, Rat, Monkey and Human Liver Microsomes - Raw Data



# **APPENDIX 3**

Stability of Ketanserin in Mouse, Rat, Monkey and Human Liver Microsomes - Raw Data



|            |            |           | Raw Data  |           |               |               |            |            |
|------------|------------|-----------|-----------|-----------|---------------|---------------|------------|------------|
| Compound   | Species    | Time(min) | Analyte   | Analyte   | IS Peak       | IS Peak       |            |            |
| _          | -          |           | Peak Area | Peak Area | Area (counts) | Area (counts) | Area Ratio | Area Ratio |
|            |            | 0         | 1.93E+06  | 1.99E+06  | 8.68E+05      | 8.45E+05      | 2.22       | 2.36       |
|            |            | 15        | 1.18E+06  | 1.17E+06  | 8.32E+05      | 8.31E+05      | 1.42       | 1.41       |
|            | CD 1/ICP   | 30        | 7.30E+05  | 7.08E+05  | 8.43E+05      | 8.45E+05      | 0.87       | 0.84       |
| Ketanserin | mouse      | 60        | 3.42E+05  | 3.24E+05  | 8.37E+05      | 8.49E+05      | 0.41       | 0.38       |
|            |            | 90        | 1.94E+05  | 1.94E+05  | 8.29E+05      | 8.36E+05      | 0.23       | 0.23       |
|            |            | 120       | 1.20E+05  | 1.28E+05  | 8.43E+05      | 8.39E+05      | 0.14       | 0.15       |
|            |            | 0         | 2.00E+06  | 1.93E+06  | 8.58E+05      | 8.74E+05      | 2.33       | 2.21       |
|            |            | 15        | 1.42E+06  | 1.46E+06  | 8.57E+05      | 8.57E+05      | 1.66       | 1.70       |
|            | Sprague    | 30        | 9.99E+05  | 1.00E+06  | 8.34E+05      | 8.78E+05      | 1.20       | 1.14       |
| Ketanserin | Dawley rat | 60        | 5.01E+05  | 5.15E+05  | 8.76E+05      | 8.37E+05      | 0.57       | 0.61       |
|            |            | 90        | 3.16E+05  | 3.07E+05  | 8.43E+05      | 8.62E+05      | 0.37       | 0.36       |
|            |            | 120       | 1.91E+05  | 1.89E+05  | 8.55E+05      | 8.14E+05      | 0.22       | 0.23       |
|            | Wistar Han | 0         | 2.02E+06  | 2.08E+06  | 8.55E+05      | 8.52E+05      | 2.36       | 2.44       |
|            |            | 15        | 1.08E+06  | 1.09E+06  | 8.41E+05      | 8.28E+05      | 1.28       | 1.31       |
| <b>T</b> Z |            | 30        | 5.31E+05  | 5.23E+05  | 8.76E+05      | 8.71E+05      | 0.61       | 0.60       |
| Ketanserin | rat        | 60        | 1.29E+05  | 1.41E+05  | 8.41E+05      | 8.24E+05      | 0.15       | 0.17       |
|            |            | 90        | 4.80E+04  | 4.97E+04  | 8.74E+05      | 8.55E+05      | 0.05       | 0.06       |
|            |            | 120       | 2.31E+04  | 2.42E+04  | 8.56E+05      | 8.22E+05      | 0.03       | 0.03       |
|            |            | 0         | 2.07E+06  | 2.07E+06  | 8.64E+05      | 8.34E+05      | 2.40       | 2.49       |
|            |            | 15        | 1.43E+06  | 1.46E+06  | 8.30E+05      | 8.23E+05      | 1.72       | 1.77       |
| Vatanasi   | Cynomolgus | 30        | 9.68E+05  | 9.82E+05  | 8.42E+05      | 8.42E+05      | 1.15       | 1.17       |
| Ketanserin | monkey     | 60        | 4.84E+05  | 4.88E+05  | 8.40E+05      | 8.18E+05      | 0.58       | 0.60       |
|            |            | 90        | 2.68E+05  | 2.75E+05  | 8.65E+05      | 8.40E+05      | 0.31       | 0.33       |
|            |            | 120       | 1.69E+05  | 1.65E+05  | 8.19E+05      | 8.19E+05      | 0.21       | 0.20       |
|            |            | 0         | 2.11E+06  | 1.97E+06  | 8.12E+05      | 8.57E+05      | 2.60       | 2.30       |
|            |            | 15        | 1.57E+06  | 1.56E+06  | 8.30E+05      | 8.13E+05      | 1.89       | 1.92       |
| Vatanganin | III        | 30        | 1.09E+06  | 1.19E+06  | 7.77E+05      | 8.37E+05      | 1.40       | 1.42       |
| Ketanserin | numan      | 60        | 7.23E+05  | 6.78E+05  | 7.52E+05      | 7.42E+05      | 0.96       | 0.91       |
|            |            | 90        | 6.14E+05  | 5.18E+05  | 8.82E+05      | 8.80E+05      | 0.70       | 0.59       |
|            |            | 120       | 4.40E+05  | 4.88E+05  | 7.60E+05      | 7.88E+05      | 0.58       | 0.62       |

## Stability of Ketanserin in Mouse, Rat, Monkey and Human Liver Microsomes - Raw Data



# **APPENDIX 4**

01049-20020-microsomal stability protocol



# *In Vitro* Metabolic Stability of ALC-0159 in CD-1/ICR Mouse, Sprague Dawley Rat, Wistar Han Rat, Cynomolgus Monkey, and Human Liver Microsomes

**Testing Facility** Medicilon Preclinical Research (Shanghai) LLC 585 Chuanda Road Pudong, Shanghai 201299 China

**Study Number** 01049-20020

Study Director (b) (6)

**Sponsor** Acuitas Therapeutics Inc.

# CONTENTS

| 1. INTRODUCTION                             | 3 |
|---------------------------------------------|---|
| 1.1. Study Number                           | 3 |
| 1.2. Study Title                            | 3 |
| 1.3. Sponsor Representative                 | 3 |
| 1.4. Objective                              | 3 |
| 1.5. Compliance                             | 3 |
| 1.6. Testing Facility                       | 3 |
| 1.7. Personnel                              | 3 |
| 1.8. Study Schedule                         | 4 |
| 2. MATERIALS                                | 4 |
| 2.1. Test Article                           | 4 |
| 2.2. Positive Control and Internal Standard | 4 |
| 2.3. Liver Microsomes and Cofactor          | 4 |
| 3. EXPERIMENTAL PROCEDURES                  | 5 |
| 4. BIOANALYSIS                              | 6 |
| 4.1. Instruments                            | 6 |
| 4.2. LC/MS/MS Conditions                    | 6 |
| 5. DATA ANALYSIS                            | 7 |
| 6. FINAL REPORT                             | 7 |
| 7. SIGNATURES                               | 8 |

#### 1. INTRODUCTION

#### 1.1. Study Number

01049-20020

#### 1.2. Study Title

*In Vitro* Metabolic Stability of ALC-0159 in CD-1/ICR Mouse, Sprague Dawley Rat, Wistar Han Rat, Cynomolgus Monkey, and Human Liver Microsomes

#### **1.3.** Sponsor Representative

# (b) (6)

Acuitas Therapeutics Inc. 6190 Agronomy Road, Suite 402 Vancouver BC V6T 1Z3

Canada

# (b) (6)

#### 1.4. Objective

To evaluate the *in vitro* metabolic stability of ALC-0159 in liver microsomes from different species and to determine intrinsic clearance in each species.

#### 1.5. Compliance

This is a non-GLP study and will be conducted according to the Standard Operating Procedures (SOPs) of Medicilon Preclinical Research (Shanghai) LLC.

#### 1.6. Testing Facility

Medicilon Preclinical Research (Shanghai) LLC 585 Chuanda Road, Pudong, Shanghai 210299, China

#### 1.7. Personnel

1.7.1. Study Director



1.7.2. Alternate Contact





#### **1.8.** Study Schedule

| Study Initiation Date:       | Signature date by Study Director   |
|------------------------------|------------------------------------|
| Experiment Start Date:       | To be included in the final report |
| Experiment Termination Date: | To be included in the final report |
| Draft Report Issue Date:     | To be included in the final report |

#### 2. MATERIALS

#### 2.1. Test Article

Name: ALC-0159 Molecular Formula:  $C_{30}H_{60}NO (C_2H_4O)_n$  (n = 45~50) MW (g/mol): ~2400-2600



#### 2.2. Positive Control and Internal Standard

Ketanserin and verapamil will be used as positive control and internal standard, respectively. The sources will be documented in experimental records and presented in the report.

#### 2.3. Liver Microsomes and Cofactor

Liver microsomes of CD-1/ICR mouse, Sprague Dawley rat, Wistar Han rat, cynomolgus monkey, and human were purchased from qualified suppliers and stored in a -70°C ultra low temperature freezer. NADPH (reduced  $\beta$ -nicotinamide adenine dinucleotide 2'-phosphate) tetrasodium salt were purchased from a qualified supplier and stored at 2-8°C in a refrigerator. The source and lot numbers will be documented in the experimental records and presented in the final report.

#### 3. EXPERIMENTAL PROCEDURES

(1) Preparation of stock solution: Appropriate amount of test article or positive control is weighed and dissolved in DMSO to obtain a 10 mM stock solution.

## (2) Preparation of 0.5 mM spiking solution:

| Spiking Solution of Test Article or Positive Control                                |      |      |      |  |  |  |
|-------------------------------------------------------------------------------------|------|------|------|--|--|--|
| Conc. of stock solution Volume of stock solution Volume of MeOH Final Concentration |      |      |      |  |  |  |
| (mM)                                                                                | (µL) | (µL) | (mM) |  |  |  |
| 10                                                                                  | 10   | 190  | 0.5  |  |  |  |

(3) Preparation of 1.5× liver microsomes suspension containing test article or positive control:

| 1.5× Liver Microsomes Suspension Containing Test Article or Positive Control |                                       |                             |                                   |                                        |                  |  |  |
|------------------------------------------------------------------------------|---------------------------------------|-----------------------------|-----------------------------------|----------------------------------------|------------------|--|--|
| Liver M                                                                      | licrosomes                            | 0.5 mM                      | 100 mM notassium                  | Final Concentration                    |                  |  |  |
| Conc. of stock<br>suspension<br>(mg/mL)                                      | Volume of stock<br>suspension<br>(µL) | spiking<br>solution<br>(μL) | phosphate buffer (pH 7.4)<br>(μL) | Liver microsomal<br>protein<br>(mg/mL) | Compound<br>(µM) |  |  |
| 20                                                                           | 18.75                                 | 1.5                         | 479.75                            | 0.75                                   | 1.5              |  |  |

- (4) 3×NADPH working solution (6 mM; 5 mg/mL) will be prepared by dissolving NADPH in 100 mM pH 7.4 potassium phosphate buffer. The working solution is then pre-warmed at 37°C.
- (5) 30  $\mu$ L of 1.5× liver microsomes suspension containing test article or positive control is added to 96-well plates in duplicate for each time point (0, 15, 30, 60, 90, and 120 min).
- (6) 96-well incubation plates are pre-warmed at 37 °C for 5 min.
- (7) For 0-min samples: 450 μL ethanol containing internal standard (IS solution) is added before 15 μL pre-warmed NADPH working solution (6mM) is added.
- (8) For other samples (15, 30, 60, 90, and 120 min): 15 μL pre-warmed NADPH working solution (6 mM) is added to initiate reaction.

| Volume (                                                                           |                                | Final Concentration in incubation mixture |                                        |                                                                                  |   |
|------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|---|
| 1.5× Liver Microsomes<br>Suspension Containing Test<br>Article or Positive Control | 3×NADPH<br>working<br>solution | Total                                     | Liver microsomal<br>protein<br>(mg/mL) | ver microsomal<br>protein<br>(mg/mL) Test Article or<br>Positive Control<br>(µM) |   |
| 30                                                                                 | 15                             | 45                                        | 0.5                                    | 1                                                                                | 2 |

The samples are incubated at 37 °C and 450  $\mu$ L IS solution is added to stop the reaction at the corresponding time points (15, 30, 60, 90, and 120 min).

- (9) After quenching, shake the plates at 600 rpm for 10 min and then centrifuge them at 6,000 rpm for 15 min.
- (10) The plates are sealed and stored at -20 °C in a freezer until bioanalysis.
- (11) Thaw the plates at room temperature, centrifuge them at 6,000 rpm for 15 min, then transfer 200  $\mu$ L of the supernatant from each well into a 96-well sample plate for LC-MS/MS analysis.

#### 4. **BIOANALYSIS**

#### 4.1. Instruments

SHIMADZU: UPLC system Sciex Triple Quad 6500+ with ESI ion source

#### 4.2. LC/MS/MS Conditions

Column: Agilent Zorbax SB-CN 3.5um (100mm\*2.1mm)

#### Gradient for ALC-0159

| Time (min) | Solvent A (%) | Solvent B (%) |
|------------|---------------|---------------|
| 0.00       | 80            | 20            |
| 0.40       | 30            | 70            |
| 1.60       | 10            | 90            |
| 2.70       | 10            | 90            |
| 2.71       | 80            | 20            |
| 3.00       | 80            | 20            |

A: 0.1%Formic acid in water

B: 0.1%Formic acid in acetonitrile

Flow rate: 600 µL/min

Column temperature: 40 °C

Autosampler temperature: 4°C

| Compound         | Q1(m/z) | Q3(m/z) | Retention Time (min) |
|------------------|---------|---------|----------------------|
| ALC-0159         | 1164.00 | 494.70  | ~1.30                |
| Tolbutamide (IS) | 271.10  | 172.00  | ~1.02                |

#### 5. TA ANALYSIS

The % remaining will be calculated by dividing the peak area ratio (test article peak area/ internal standard peak area) by the time zero peak area ratio. The natural logarithm of % remaining will be plotted against time, and the slope of the regression line will be determined. Then elimination constant and half-life will be calculated as below.

Elimination rate constant (k) = - slope

Half-life  $(t_{1/2}) = 0.693/k$ 

The *in vitro* intrinsic clearance,  $CL'_{int}$ , will be calculated from the  $t_{1/2}$  as follows:

 $CL'_{int} = (0.693/T_{1/2}) \times (1/(microsomal protein concentration (0.5 mg/mL))) \times Scaling Factor$ 

The scaling factors are listed in Table 1.

| in Mouse, Rat, Monkey, and Human Liver Microsomes |                         |                      |                      |                  |  |  |  |
|---------------------------------------------------|-------------------------|----------------------|----------------------|------------------|--|--|--|
| Species                                           | Microsomal Protein (mg) | Liver Weight (g) per | Scaling Factor       | Hepatic Blood    |  |  |  |
|                                                   | per Gram of Liver       | kg Body Weight       | (mg/kg) <sup>a</sup> | Flow (mL/min/kg) |  |  |  |
| Mouse                                             | 45                      | 87.5                 | 3937.5               | 90               |  |  |  |
| Rat                                               | 44.8                    | 40                   | 1792                 | 55.2             |  |  |  |
| Monkey                                            | 45                      | 32.5                 | 1462.5               | 44               |  |  |  |
| Human                                             | 48.8                    | 25.7                 | 1254.2               | 20.7             |  |  |  |

Table 1. Scaling Factors for Intrinsic Clearance Prediction

<sup>a</sup>Microsomal protein (mg/g liver) × liver weight (g)/kg body weight

#### 6. FINAL REPORT

After completion of the study, a draft report including the results, analysis and discussion will be sent to the Sponsor in Microsoft Word format.

One month after issuance of the draft report, if no requested revisions or instructions to finalize have been communicated by the Sponsor, the draft report will be issued as a final report, signed by the Study Director, and submitted to the Sponsor in Adobe Acrobat PDF format, containing hyperlinks, as applicable. Any modifications or changes to the draft report requested one month after issuance of the draft will be performed at additional cost to the Sponsor.

