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ABSTRACT: Atypical measles and enhanced respiratory syncytial
virus disease (ERD) were serious diseases that resulted from expo-
sure of children immunized with inactivated vaccines against measles
virus (MV) and respiratory syncytial virus (RSV) to the respective
wild-type agents in the 1960s. Although the clinical manifestations of
both illnesses were different, the immune responses elicited and
primed for by the vaccines shared important similarities. Both vac-
cines failed to elicit long-lived protective antibody and to promote
cytotoxic T lymphocyte responses. In both cases, postvaccination
exposure to wild type virus during community outbreaks was asso-
ciated with immune complex deposition in affected tissues, vigorous
CD4� T lymphocyte proliferative responses, and a Th2 bias of the
immune response. No relapses of atypical measles or ERD were ever
reported.

In this manuscript, the pathogeneses of both enhanced diseases
and the requirements for the generation of protective antibodies
against MV and RSV are discussed, to contribute to the develop-
ment of newer safe and effective vaccines against these important
pathogens. (Pediatr Res 62: 111–115, 2007)

Paramyxoviruses are important agents of diseases in chil-
dren. Among them, measles virus (MV) and respiratory

syncytial virus (RSV) have been recognized for decades as
causes of pediatric illnesses associated with significant mor-
bidity (1,2). While a protective live attenuated vaccine against
MV (LAV) is available for older infants and children, sero-
conversion rates are lower in young infants and no vaccine has
been licensed against RSV. Protecting young infants against
MV and RSV is important. In the 1960s, formalin-inactivated
vaccines against these agents were developed and adminis-
tered to infants and children in the United States (3–8). The
vaccines were not protective, and primed for severe forms of
disease in individuals exposed to the respective wild-type
viruses (3–12).
Although the pathogeneses of the enhanced illnesses elic-

ited by MV and RSV have been studied separately for de-
cades, both diseases share important similarities in their mech-

anisms of illness. In this manuscript, we discuss the
similarities and specific differences between atypical measles
and enhanced RSV disease (ERD). Understanding the patho-
geneses of these vaccine-enhanced diseases is important for
the development of safe, newer vaccines against paramyxovi-
ruses.
Measles virus.MV is responsible for hundreds of thousands

of deaths every year in developing countries, despite the
availability of a safe and effective LAV (1). The vaccine is
immunogenic when administered to infants and young chil-
dren 9–15 months of age, but seroconversion rates are lower
in infants under the age of 9 months due to the presence of
interfering transplacentally acquired maternal antibody and
the immune immaturity of the host (13,14). In developing
countries with high rates of measles, infants are often exposed
to the virus before the age of 9 months and represent an
important number of the fatalities caused by the virus every
year (1). For this reason, expanding vaccine coverage in
affected areas and/or developing new immunization strategies
for young infants is important if this “window of susceptibil-
ity” is to be closed.
In the 1960s, inactivated vaccines against MV were intro-

duced in the United States and Europe (7–12). The formalin-
inactivated MV vaccine (FIMV) licensed in the States was
immunogenic, but antibody waned within months to a couple
of years (7). Fifteen to sixty percent of immunized children
subsequently exposed to wild-type MV during community
outbreaks developed a severe form of disease called atypical
measles (7–12). Atypical measles was characterized by high
fever, a petechial or morbiliform rash that began on the
extremities and a severe pneumonitis (7–12). Other clinical
manifestations, including abdominal pain, eosinophilia and
hepatic dysfunction were also described (7–12). The disease
was severe enough to warrant hospitalization in many cases
(7–12). The vaccine was withdrawn in 1967 because of these
problems.
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Respiratory syncytial virus. Respiratory syncytial virus
(RSV) is the main viral respiratory cause of hospitalization in
infants and young children worldwide (2). More than 50% of
infants experience an RSV infection during their first seasonal
encounter with the virus, and over 90% have become infected
by the end of the second season of RSV exposure (2,15). Most
of these primary infections are symptomatic and 30–70% of
them manifest as lower respiratory illness (LRI) with bron-
chiolitis and/or pneumonia. Reinfections occur through life
and are usually symptomatic, although they do not generally
cause LRI in immunocompetent adults and healthy older
children (2).
In 1961, a formalin-inactivated vaccine against RSV

(FIRSV) was developed using the Bernett strain of RSV
passaged in human embryonic kidney cells (�3) and vervet
monkey kidney cells (�10) (3). RSV was inactivated by
incubation with 0.4% formaldehyde for 72 h and adsorbed to
4 mg/mL of aluminum hydroxide. The vaccine was adminis-
tered in 1–3 doses to RSV-seronegative and RSV-seropositive
infants and children during 1966 (3–6). Control groups of
children received a formalin-inactivated parainfluenza vaccine
(3–5) or no vaccine (6). The vaccine was immunogenic, but
elicited mainly nonprotective antibodies. During the winter of
1966–1967, immunized children were exposed to RSV in the
community, and those that were seronegative for the virus
before vaccination experienced a significant increase in the
frequency and severity of LRI and a greater incidence of
hospitalization compared with control children (3–6). The
main clinical manifestations in these children included
bronchoconstriction and pneumonia (3–6). Furthermore,
two immunized infants died as toddlers as a consequence of
subsequent RSV infection (3). Autopsy material showed bron-
chopneumonia, atelectases, and pneumothoraces (3). Histopa-
thology was reported as a “peribronchiolar monocytic infil-
tration with some excess in eosinophils” (3). High titers of
RSV were recovered from the lungs of the two children (3).
No vaccine against RSV has been licensed since.

HYPOTHESES

Atypical measles. Several hypotheses were advanced to
explain the pathogenesis of atypical measles, including a
MV-derived delayed type hypersensitivity response and a
generalized Arthus reaction (16–20). Perhaps the most widely
accepted hypothesis early on was that atypical measles re-
sulted from an imbalance in the antibody response to the MV
glycoproteins hemagglutinin (HA) and fusion (F) elicited by
the inactivated vaccine (21,22). Based on tissue culture ex-
periments with a related paramyxovirus, simian virus 5, it was
suggested that low levels of antibody against MV F – follow-
ing a postulated disruption of the protein during formalin
inactivation- allowed extensive spread of the virus via cell-to-
cell fusion leading to more severe disease (23).
Enhanced respiratory syncytial virus disease. The question

about the mechanism of illness in ERD has dominated the
RSV literature for decades. Given the histopathology de-
scribed in lung sections from affected children (3), a number
of models of ERD have focused on the development of

pulmonary eosinophilia and Th2 responses (24–27). The
eosinophilia has been ascribed –as in the case of atypical
measles- to an imbalance in the RSV glycoproteins present
in the formalin-inactivated vaccine. A dominant immune
response against the RSV attachment protein (G), associ-
ated again with the presumptive disruption of the fusion
(RSV F) protein during formalin inactivation, was postu-
lated to prime for lung eosinophilia and Th2 bias in affected
individuals (25–27).

CLINICAL AND IMMUNOLOGIC
MANIFESTATIONS COMMON TO ATYPICAL

MEASLES AND ERD

Several similarities are apparent upon examination of the
immune manifestations that characterized atypical measles
and ERD.
First, both FIMV and FIRSV failed to elicit long-lived

protective antibodies in children and – as expected for inac-
tivated vaccines- did not elicit a detectable virus-specific
cytotoxic T lymphocyte (CTL) response (3–8,28–31). Early
determinations of the neutralizing capacity of sera from chil-
dren immunized with FIMV using Vero cells suggested that
these antibodies were protective against MV. However, the
clinical manifestations of children and macaques with atypical
measles demonstrated that the abundant anamnestic antibody
response observed early after challenge was not protective
(28,29) and that transient protection after vaccination was
probably explained by steric hindrance of critical epitopes. In
ERD, antibodies in mice and humans had high anti-RSV F
EIA/anti-RSV neutralization ratios, also suggesting poor pro-
tective efficacy (live RSV infections elicit antibody responses
of low EIA/neutralization ratios) (46). Furthermore, high titers
of RSV were recovered from lung sections of affected chil-
dren, clearly establishing the lack of protection (3).
Second, exposure to wild type viruses led to strong prolif-

erative CD4� T lymphocyte responses (32,33) and a Th2
polarization of the immune response in both diseases. In
rhesus macaques with atypical measles, this Th2 bias was
characterized by early suppression of IL-12 (IL-12) secretion
by monocytes, followed by pulmonary eosinophilia and late
production of IL-4 (34). In animal models of ERD, pulmonary
eosinophilia and production of Th2 cytokines have been fre-
quently reported (35–37). In fact, formalin inactivation has
also been noted to favor a Th2 bias (38). Yet, it is important
to highlight that certain mouse strains, cotton rats, and cattle
with ERD present pulmonary infiltrates dominated by neutro-
phils, and not eosinophils (39–41). Furthermore, revision of
the autopsy reports and original slides from affected children
revealed a clear predominance of neutrophils and macro-
phages in the lungs accompanied by the occasional presence
of eosinophils in smaller bronchioles (these eosinophils some-
how gained a disproportionate relevance in the original manu-
script) (40).
Third, both mechanisms of illness were associated with

immune complex deposition in affected tissue. Rhesus ma-
caques with atypical measles had evidence of immune com-
plex deposition on dermal vessels (28). In addition, individu-
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als immunized with FIMV were subsequently re-immunized
with LAV to prevent the development of atypical measles, and
had significant local reactions to vaccination (16–20), also
presenting with deposition of immune complexes around der-
mal vessels (16). As for ERD, a role for immune complexes
was first suspected by authors of the original manuscript given
the abundance of nonprotective antibody in sera from infected
vaccine recipients and the bibasal distribution of pulmonary
infiltrates in affected children (3). More recently, peribron-
chiolar and perivascular deposition of immune complexes has
been demonstrated in the lungs of affected mice (30). Anti-
body deposition did not result in bronchoconstriction during
murine ERD in the absence of complement activation and
complement did not elicit bronchoconstriction in the absence
of antibodies (30). A similar pattern of immune complex
deposition was observed in cotton rats (G. Prince, personal
communication). Further, staining of the lungs of children
who died of ERD in 1967 demonstrate immune complex-
mediated activation of the classic complement cascade, evi-
denced by peribronchiolar deposition of complement compo-
nent C4d (30).
Fourth, abundant evidence suggests that the glycoprotein

imbalance postulated early on as the explanation for both
diseases, and ascribed to formalin disruption of the fusion
proteins in MV and RSV, is incorrect. Rhesus macaques
developed atypical measles in the presence of fusion-
inhibiting antibodies (28), and DNA vaccines encoding only
the HA glycoprotein (and therefore not the fusion protein)
did not prime for atypical measles (42). In RSV, the G
protein was postulated to elicit ERD in the theoretical
absence of RSV F. But inoculation of BALB/c mice with a
formalin-inactivated recombinant RSV that does not en-
code the G protein elicited ERD of identical severity as that
induced by inactivated wild type virus (42,43). In fact, the
G protein – often postulated as an important mediator of
ERD pulmonary inflammation - has recently been shown to
decrease the degree of pulmonary mononuclear cell infil-
tration during RSV infection (44,45).
Finally, no child ever experienced atypical measles or ERD

twice. In fact, exposure to wild-type virus (or in the case of
some of the children immunized with FIMV, administration of
LAV) reestablished a normal immune response to subsequent
exposures in all immunized individuals (33).

ANTIBODIES AND PARAMYXOVIRUSES

Perhaps, the most pressing question about the pathogeneses
of atypical measles and ERD is why antibodies failed to
confer protection and how was the problem “corrected” by
subsequent exposure to live virus. In other words, what is
required of specific antibodies to protect against these agents?
The inability of several other nonreplicating MV and RSV
vaccines to elicit long-lived protective antibody responses in
subsequent experiments (including purified RSV F and G
proteins, tween ether-inactivated MV, Baculovirus-expressed
RSV F protein, among others) stress that lack of protection in
atypical measles and ERD cannot be solely attributed to the
poor preservation of specific antigens during formalin inacti-

vation (21,22,46–48). Development of aberrant immune man-
ifestations after administration of a tween-ether inactivated
MV vaccine to children in Europe (21,22), and the failure of
a variety of nonreplicating immunogens against RSV in ani-
mal models (46–48) illustrate the difficulties of developing
protective and safe nonreplicating vaccines against these two
agents.
Should FIMV or FIRSV had elicited protective antibody, it

is likely that exposure to MV or RSV in the community would
not have caused these serious illnesses (7,49). In fact, once
antibodies fail to protect, ERD and atypical measles can come
in different flavors. Different animal models of these en-
hanced diseases display a varying predominance of neutro-
phils, macrophages, or eosinophils in affected tissues that
depend on the strain of mouse or the species chosen by the
investigators (35–41). These findings suggest that a variety
of CD4� T cells primed by vaccination to secrete differing
cytokines and/or chemokines may elicit enhanced MV or
RSV diseases when exposed to abundant wild type virus in
the absence of protective antibody (35–41). Furthermore,
complement activation through immune complex deposi-
tion enhances the CD4� T lymphocyte response and aug-
ments disease severity (50).
As for the requirements for the development of protective

antibody responses, and also as a clue to the lack of relapses
in both diseases, the avidity of antibody for wild-type virus
may be important (29). MV-specific antibody elicited by
FIMV was of low avidity (29). Changes in antibody avidity
after MV challenge correlated with changes in neutralizing
capacity (29). Affinity maturation of antibody following MV
exposure established a long-lived protective antibody re-
sponse (29).
Affinity maturation of antibody may be equally important to

protect against RSV. In fact, a role for affinity maturation may
help to clarify why none of the children who were RSV-
seropositive before immunization with FIRSV developed
ERD. It is likely that their preexistent RSV-specific antibodies
against wild type RSV were of high affinity (low EIA/
neutralization ratio) and “outcompeted” the pathogenic anti-
bodies elicited by the vaccine (3). Similarly, exposure of
immunized individuals to wild-type infection (21,22,28–30)
[or LAV remedial administration (19,20)] elicited antibodies
of high affinity that also “outcompeted” the pathogenic hu-
moral response generated earlier on by FIMV or FIRSV, and
ensured that no relapse of these diseases ever occurred. These
observations suggest that characterization of antibody avidity
is an important consideration in evaluating vaccines against
these paramyxoviruses.

CONCLUSIONS

Atypical measles and ERD were serious diseases that re-
sulted from immunization of children with inactivated vac-
cines against MV and RSV. Both vaccines failed to elicit
protective antibody and, in both cases, postvaccination expo-
sure to wild type virus led to immune complex deposition in
affected tissues, vigorous anamnestic CD4� T lymphocyte
proliferative responses, and a Th2 bias of the immune re-
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sponse. No relapses of either illness were ever reported.
Although the clinical manifestations of both illnesses were
different, and obeyed primarily to the individual tropism of
each virus (1,2), the similarities in immune responses elicited
and primed for by the vaccines suggest that atypical measles
and ERD share a common general mechanism of illness.
Furthermore, these diseases resulted from a disproportionate
response of a primed immune system exposed to wild-type
virus in the absence of protective antibody. These experiences
highlight the importance of understanding the requirements
for the production of protective antibodies against these agents
to develop new safe and effective vaccines to protect young
infants.
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