<table>
<thead>
<tr>
<th>Application Type</th>
<th>Original BLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>STN</td>
<td>125742/0</td>
</tr>
<tr>
<td>CBER Received Date</td>
<td>May 18, 2021</td>
</tr>
<tr>
<td>PDUFA Goal Date</td>
<td>January 16, 2022</td>
</tr>
<tr>
<td>Division / Office</td>
<td>OVRR</td>
</tr>
<tr>
<td>Committee Chair</td>
<td>Ramachandra Naik</td>
</tr>
<tr>
<td>Product Reviewer</td>
<td>Xiao Wang</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Mike Smith and Laura Gottschalk</td>
</tr>
<tr>
<td>Priority Review</td>
<td>Yes</td>
</tr>
<tr>
<td>Reviewer Name</td>
<td>Xinyu Tang</td>
</tr>
<tr>
<td>Review Completion Date / Stamped Date</td>
<td></td>
</tr>
<tr>
<td>Concurrence</td>
<td>Lei Huang, Concurring Reviewer, VEB, DB, OBE</td>
</tr>
<tr>
<td></td>
<td>Tsai-Lien Lin, Branch Chief, VEB, DB, OBE</td>
</tr>
<tr>
<td></td>
<td>John A. Scott, Director, DB, OBE</td>
</tr>
<tr>
<td>Applicant</td>
<td>BioNTech Manufacturing GmbH in partnership with Pfizer, Inc.</td>
</tr>
<tr>
<td>Established Name</td>
<td>COVID-19 Vaccine, mRNA</td>
</tr>
<tr>
<td>Trade Name</td>
<td>COMIRNATY®</td>
</tr>
<tr>
<td>Pharmacologic Class</td>
<td>Vaccine</td>
</tr>
<tr>
<td>Formulation, including Adjuvants, etc.</td>
<td>After preparation, each 0.3 mL dose contains 30 µg modified mRNA encoding SARS-CoV-2 spike glycoprotein</td>
</tr>
<tr>
<td>Dosage Form and Route of Administration</td>
<td>Injectable Suspension, Intramuscular</td>
</tr>
<tr>
<td>Dosing Regimen</td>
<td>Two 0.3 mL doses, 3 weeks apart</td>
</tr>
<tr>
<td>Indication and Intended Population</td>
<td>Active immunization to prevent coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in individuals 16 years of age and older</td>
</tr>
</tbody>
</table>
Table of Contents

Glossary .. 3

1. Executive Summary ... 3

2. Regulatory Background .. 4

3. Sources of Data and Other Information Considered in the Review ... 5

4. Review of the Method Validation of the SARS-CoV-2 mNeonGreen Virus Microneutralization Assay .. 5
 4.1 Introduction .. 5
 4.2 Experimental Design .. 6
 4.3 Statistical Analysis ... 7
 4.4 Linearity .. 7
 4.4 Precision ... 9
 4.5 Limits of Quantitation .. 10
 4.6 Assay Intermediate Precision ... 10
 4.7 Limit of Detection .. 11
 4.8 Extravariability of Replicates .. 11

5. Review of the Report for Co-validation of Test Method TM100010380 - Determination of the (b) (4) of PF-07302048 (BNT162b2 Construct, Drug Product) by (b) (4) ... 11
 5.1 Introduction .. 11
 5.2 Validation Outline .. 12
 5.3 Precision – Repeatability ... 13
 5.4 Precision – Reproducibility ... 14
 5.5 Specificity ... 15
 5.6 Detection Limit .. 15
 5.7 Robustness .. 17

6. Conclusions .. 17
1. Executive Summary

BioNTech and Pfizer submitted an original Biologics License Application (BLA) on May 18, 2021 for BNT162b2. BNT162b2 is a prophylactic vaccine that prevents Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The proposed indication is active immunization to prevent COVID-19 caused by SARS-CoV-2 in individuals ≥16 years of age. The proposed dosage is 30 µg via intramuscular (IM) injection following a dosing regimen of two 0.3-mL doses given three weeks apart.

This review memo focuses on the statistical review of the non-clinical aspects of this submission, including the validation of the clinical immunogenicity assay as well as the in-vitro potency assay. Specifically, this review memo covers:

- the validation of the SARS-CoV-2 mNeonGreen virus microneutralization assay (SARS-CoV-2 mNG NT) for the detection of serum antibodies capable of neutralizing SARS-CoV-2 (VR-MVR-10083), and

- the validation of Test Method TM100010380 v5.0 for determination of the [b] [4] of PF-07302048 (BNT162b2 construct, Drug Product) by [b] [4] (VAL100147509)
based on the validation reports submitted in Module 5.3.1.4 of BLA125742/0.0 and Module 3.2.R of BLA125741/0.19, which have not been reviewed previously.

With respect to the validation of the SARS-CoV-2 mNG NT assay, results from the validation study suggest acceptable accuracy and precision. The limit of detection (LOD), lower limit of quantitation (LLOQ), and upper limit of quantitation (ULLOQ) were determined to be (b) (4) respectively. The LOD study demonstrated an acceptable false positive rate but did not evaluate the false negative rate at the LOD. Because this assay was not used in the determination of serostatus in clinical studies included in this BLA submission, the unknown false negative rate does not impact the approval of this BLA. However, the false negative rate may be a concern in the future, depending on future use of this assay.

With respect to the validation of Test Method TM100010380 v5.0 (referred to as the (b) (4) assay hereafter), results from the validation study suggest acceptable specificity and robustness to (b) (4). The detection limit (DL) was determined to be (b) (4). The repeatability and reproducibility of the assay were estimated to be (b) (4) relative standard deviation (RSD), respectively. Since the (b) (4) assay was validated as a limit test, the repeatability and reproducibility results were evaluated for information only.

In conclusion, I consider both the SARS-CoV-2 mNG NT and (b) (4) assays adequate for their intended uses in support of this BLA.

2. Regulatory Background

The Investigational New Drug Application (IND19736) for BNT162b2 was submitted on April 29, 2020. Fast Track Designation was granted on July 7, 2020 for individuals 18 years of age and older. On December 11, 2020, Emergency Use Authorization (EUA 27034) of BNT162b2 for active immunization to prevent COVID-19 in individuals 16 years of age and older was granted (EUA product identified as Pfizer-BioNTech COVID-19 Vaccine). BioNTech and Pfizer submitted this BLA on May 18, 2021 for BNT162b2.

The following documents regarding clinical assays were submitted in Module 5.3.1.4 of BLA125741/0.0:

- Qualification Report for a (b) (4) Direct Luminex Assay (dLIA) for Quantitation of IgG Antibodies to SARS-CoV-2 S1 Protein in Human Sera (VR-MQR-10211, Version 2.0),
- Qualification Report for a (b) (4) Direct Luminex Assay (dLIA) for Quantitation of IgG Antibodies to SARS-CoV-2 RBD Protein in Human Sera (VR-MQR-10212, Version 2.0),
• Qualification of the SARS-CoV-2 mNeonGreen Virus Microneutralization Assay (VR-MQR-10214, Version 2.0), and
• Method Validation of the SARS-CoV-2 mNeonGreen Virus Microneutralization Assay (VR-MVR-10083, Version 1.0).
All these qualification and validation reports have been reviewed during the IND stage, except for the validation report for the SARS-CoV-2 mNG NT assay, which is covered in this review memo.

The following document regarding the potency assay was submitted in Module 3.2.R of BLA125741/0.19:
• Report for Co-Validation of Test Method TM100010380 – Determination of the (b)(4) of PF-07302048 (BNT162b2 Construct, Drug Product) by (b)(4) (VAL100147509, Version 1.0).
This validation report has not been previously reviewed during the IND stage and is covered in this review memo as well.

3. SOURCES OF DATA AND OTHER INFORMATION CONSIDERED IN THE REVIEW
The following documents submitted to the BLA are reviewed:
• Method Validation of the SARS-CoV-2 mNeonGreen virus microneutralization assay used for the detection of serum antibodies capable of neutralizing SARS-CoV-2 (VR-MVR-10083, Version 1.0) (BLA125742/0.0, dated February 9, 2021, received May 6, 2021),
• Report for Co-Validation of Test Method TM100010380 – Determination of the (b)(4) of PF-07302048 (BNT162b2 Construct, Drug Product) by (b)(4) (VAL100147509, Version 1.0) (BLA125742/0.19, Module 3.2.R, dated July 16, 2021, received July 28, 2021),
• Response to 04 Aug 2021 FDA Information Request (IR) (BLA125742/0.34, Module 1.11.1, dated August 6, 2021, received August 6, 2021), and
• Validation of Analytical Procedure – (b)(4) (BLA125742/0.34, Module 3.2.P.5.3, dated August 6, 2021, received August 6, 2021).

The following document submitted to the IND is also referred to when reviewing the validation of the SARS-CoV-2 mNG NT assay:
• Validation Protocol for the SARS-CoV-2 mNeonGreen Virus Microneutralization Assay (VR-MVP-10074, Version 2.0) (IND19736/157, Module 5.3.1.4, dated December 2, 2020, received December 4, 2020).

4. REVIEW OF THE METHOD VALIDATION OF THE SARS-COV-2 mNEONGREEN VIRUS MICRONEUTRALIZATION ASSAY

4.1 Introduction
The SARS-CoV-2 mNG NT assay is a biofunctional assay that measures neutralizing antibodies against SARS-CoV-2. This assay is described in Test Method VR-TM-10298. Briefly, (b)(4)
This validation study evaluated assay linearity, precision, limit of detection, and intermediate precision. The linearity and precision results were used to define the limits of quantitation and extr vari ability criterion.

4.2 Experimental Design

Validation of the SARS-CoV-2 mNG NT assay was performed as described in the validation protocol (VR-MVP-10074).
5.1 Introduction

Test Method TM100010380 “Determination (b) (4) PF-07302048
(b) (4)
5.2 Validation Outline

This validation report contains the results of validation study conducted according to the following method validation protocols:

- VAL100138078, V1.0 Protocol for co-validation of test method TM100010380, which was the original method validation protocol to evaluate repeatability, reproducibility, specificity, and detection limit,
- INX100459445, V1.0 Amendment for protocol for co-validation of test method TM100010380, which was an amendment to original method validation protocol VAL100138078 to evaluate the robustness of during reproducibility studies.

In routine tests, the assay is analyzed
6. CONCLUSIONS

This review memo focuses on the validation of the SARS-CoV-2 mNG NT assay for the detection of serum antibodies capable of neutralizing SARS-CoV-2 and the validation of the potency assay, TM100010380 v5.0, for determination of the potency of PF-07302048 by [redacted] [redacted].

With respect to the validation of the SARS-CoV-2 mNG NT assay, results from the validation study suggest acceptable accuracy and precision. The LOD, LLOQ, and ULOQ were determined to be [redacted], respectively. The LOD study demonstrated [redacted].

With respect to the validation of the potency assay, results from the validation study suggest acceptable specificity and is robust to [redacted]. The detection limit (DL) was determined to be [redacted]. The repeatability and reproducibility of the assay were estimated to be [redacted], respectively. Since the potency assay was validated as a limit test, the repeatability and reproducibility results were evaluated for information only.

In conclusion, I consider both the SARS-CoV-2 mNG NT and potency assays adequate for their intended uses in support of this BLA.